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Preface

Medical imaging and medical image analysis are developing rapidly. While med-
ical imaging has already become a standard of modern medical care, medical
image analysis is still mostly performed visually and qualitatively. The ever-
increasing volume of acquired data makes it impossible to utilize them in full.
Equally important, the visual approaches to medical image analysis are known
to suffer from a lack of reproducibility. A significant research effort is devoted to
developing algorithms for processing the wealth of data available and extracting
the relevant information in a computerized and quantitative fashion.

Medical imaging and image analysis are interdisciplinary areas combining
electrical, computer, and biomedical engineering; computer science; mathemat-
ics; physics; statistics; biology; medicine; and other fields. Medical imaging and
computer vision, interestingly enough, have developed and continue developing
somewhat independently. Nevertheless, bringing them together promises to ben-
efit both of these fields.

This was the second time that a satellite workshop, solely devoted to medical
image analysis issues, was held in conjunction with the European Conference
on Computer Vision (ECCV), and we are optimistic that this will become a
tradition at ECCV. We received 38 full-length paper submissions to the second
Computer Vision Approaches to Medical Image Analysis (CVAMIA) Workshop,
out of which 10 were accepted for oral and 11 for poster presentation after a
rigorous peer-review process. In addition, the workshop included three invited
talks. The first was given by Maryellen Giger from the University of Chicago,
USA — titled “Multi-Modality Breast CADx”. The second invited talk dealt
with “Quantification of Growth and Motion Using Non-Rigid Registration” and
was presented by Daniel Rueckert, Imperial College London, UK. The third
invited talk was entitled “Trends and Challenges in Medical Image Analysis”
and was presented by Ravikanth Malladi, GE Global Research, India.

The workshop logistics were handled by the organizers of ECCV 2006, as-
sociated with the Institute of Electrical Measurement and Measurement Sig-
nal Processing of Graz University of Technology, the Institute for Computer
Graphics and Vision of Graz University of Technology, and the Visual Cogni-
tive Systems Laboratory at the University of Ljubljana. We thank all members
of these institutions who were involved in the organization of the workshop for
their support. We are grateful to the Styrian Government for the generous fi-
nancial support of the CVAMIA 2006 Workshop. Finally, we extend our sincere
thanks to the Program Committee members and to everyone else who made this
workshop possible.

May 2006 Reinhard R. Beichel
Milan Sonka
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Melanoma Recognition Using Representative
and Discriminative Kernel Classifiers

Tatiana Tommasi1, Elisabetta La Torre1, and Barbara Caputo2

1 University of Rome La Sapienza, P.le A. Moro 5, 00185, Rome, Italy
{tatiana.tommasi, elisabetta.latorre}@uniroma1.it

2 NADA/CVAP, KTH, SE-100 44, Stockholm, Sweden
caputo@nada.kth.se

Abstract. Malignant melanoma is the most deadly form of skin lesion.
Early diagnosis is of critical importance to patient survival. Existent vi-
sual recognition algorithms for skin lesions classification focus mostly on
segmentation and feature extraction. In this paper instead we put the
emphasis on the learning process by using two kernel-based classifiers.
We chose a discriminative approach using support vector machines, and a
probabilistic approach using spin glass-Markov random fields. We bench-
marked these algorithms against the (to our knowledge) state-of-the-art
method on melanoma recognition, exploring how performance changes
by using color or textural features, and how it is affected by the quality
of the segmentation mask. We show with extensive experiments that the
support vector machine approach outperforms the existing method and,
on two classes out of three, it achieves performances comparable to those
obtained by expert clinicians.

1 Introduction

Malignant melanoma is a spreading disease in the western world. Its incidence
has been increasing over the past decades; currently 132,000 melanoma skin
cancer occurs globally each year. One in every three cancers diagnosed is a skin
cancer and, according to Skin Cancer Foundation Statistics, one in every five
Americans will develop this kind of tumor in their lifetime [15]. Management of
melanoma is a complex issue requiring a multidisciplinary approach. The most
effective method of protection against the development of skin cancer is mini-
mization of ultraviolet exposure from sunlight. Since advanced melanoma is still
practically incurable, early detection and treatment are critical steps towards a
reduction in mortality. Surgical excision remains the mainstay of treatment [9].
In northern Europe a deceleration in the incidence and mortality trends occurred
recently in persons aged under 70, whereas in southern Europe both incidence
and mortality rates are still increasing [4]. The most plausible explanations for
the deceleration in these trends in northern Europe are earlier detection, more
frequent excision of pigmented lesions and a growing public awareness of the
dangers of excessive sunbathing [4].

Epiluminescence Microscopy (ELM or dermoscopy) is the most used diagnos-
tic technique used by clinicians to reveal malignant melanoma. It is non-invasive

R.R. Beichel and M. Sonka (Eds.): CVAMIA 2006, LNCS 4241, pp. 1–12, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 T. Tommasi, E. La Torre, and B. Caputo

and allows for a detailed surface analysis of a suspicious skin lesion by using
hand-held device emitting incident light from a light source penetrating the epi-
dermal skin layer. Physicians visually inspect dermoscopic images for abnormal
morphologic and chromatic features that indicate malignancy. They commonly
use the ABCD (Asymmetry, Border, Color, Dimension and Dermoscopic struc-
tures) method as guideline. Due to the subjective nature of examination the
accuracy of diagnosis is highly dependent upon physician’s expertise.

There is a growing awareness that one of the weakest links in the biomedical
interpretation process is the perception of details and the recognition of their
meaning by the dermatologists. An automatic system for melanoma recognition
would constitute a valuable support for physicians in every day clinical practice.
Such a system should reproduce the perceptual and cognitive strategy followed
by doctors, and should allow the dermatologist to trace each step of the process
which led to a given diagnosis, so to leave space for exploring multiple interpreta-
tions. Recently numerous research on this topic have been proposed (for a more
comprehensive discussion of the most significant literature we refer the reader to
section 2); a key factor for the development and evaluation of these systems is the
availability of a statistically significant database. One of the largest databases
of melanoma images available to the research community was contributed by H.
Ganster et al. [5]. That paper presented a database of 5363 images, accompanied
by: (a) a segmentation algorithm for isolating the potential melanoma from the
surrounding skin, determined by several basic segmentation algorithms combined
together with a fusion strategy [5]; (b) a set of features containing shape and ra-
diometric features as well as local and global parameters, calculated to describe
the malignancy of a lesion, from which significant features are selected by appli-
cation of statistical feature subset selection methods [5]; (c) a nearest neighbor
classification algorithm [5]. In that work the authors concentrated particularly on
the segmentation technique and the features selection process, obtaining results
that, to the best of our knowledge, represent the state-of-the-art on this topic.
Here we focus instead on the classification algorithm, proposing to use kernel
methods for classification of skin lesion images. Specifically, we selected a dis-
criminative method and a probabilistic one. As discriminative method we chose
Support Vector Machines (SVM, [12]), a state-of-the-art large margin classifier,
where the optimal separating surface is defined by a linear combination of scalar
products between the view to be classified and some support vectors [11][12].
By introducing a Mercer kernel, a non-linear SVM can be constructed replac-
ing the scalar products in the linear SVM via the kernel function. SVMs have
demonstrated remarkable performance on object recognition and categorization
[13] and biomedical imaging [14]. As probabilistic method we chose Spin Glass-
Markov Random Fields (SG-MRF, [2]), a fully connected MRF which integrates
results of statistical mechanics with Gibbs probability distributions via non linear
kernel mapping [2]. Experiments have shown the robustness and categorization
capabilities of this algorithm for object recognition [2] and its applicability for
biomedical applications [3]. We conducted an experimental evaluation of these
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two techniques on the Ganster’s database1, which allows for a straightforward
benchmarking of our algorithms against theirs. We tested out two methods on
two different types of features, Color Histograms (CH) and Multidimansional
receptive Fields Histograms (MFH, [10]). These features reproduce two of the
criteria followed by dermatologists for diagnosis, respectively “C” for color var-
iegation and “D” for differential local structures. Several series of experiments
were performed for selecting optimal feature descriptors. We also evaluated the
influence of the segmentation method by running two series of experiments:
the first using the segmentation masks obtained by Ganster, the second using
an hand-made rectangular mask which roughly contains the whole lesion while
minimizing the amount of surrounding skin in the image. In order to have a fair
comparison, we replicated the experimental setup used in [5] for a benchmark
evaluation. Our results show that SVM obtains remarkably better performances
than SG-MRF and Ganster’s method with both feature types and regardless of
the segmentation method. More important, on two classes out of three, SVM
achieves recognition results comparable to those obtained by skilled clinicians.

The rest of the paper is organized as follows: section 2 reviews the state of
the art in computer-assisted melanoma recognition. Then we briefly review the
theory behind SG-MRF (section 3) and SVMs (section 4). Section 5 describes
the experimental setup and reports on our findings. The paper concludes with a
summary discussion and some possible directions for future research.

2 Related Work

Recently there has been an increasing interest in developing algorithms for
melanoma classification. Grana et al. [6] provided mathematical descriptors for
the border of pigmented skin lesion images and assessed their efficacy for dis-
tinction among different lesion groups. They introduced new descriptors such as
lesion slope and lesion slope regularity and define them mathematically, then
they employed a new algorithm based on the Catmull Rom spline method and
the computation of the gray-level gradient of points extracted by interpolation of
normal direction on spline points [6]. The efficacy of these descriptors was tested
on a data set of 510 pigmented skin lesions, composed by 85 melanomas and
425 nevi, by employing statistical methods for discrimination between the two
populations [6]. Grzymala-Busse et al. [7] used discretization based on cluster
analysis, LEM2 algorithm for rule induction, and standard LERS classification
scheme to check whether the ABCD formula is optimal [7]. The data consisted
in total of 276 cases of benign nevus, blue nevus, suspicious nevus, and malig-
nant melanoma [7]. Lefevre et al. [8] proposed a theory used in different fields
such as data fusion, regression or classification: the Dempster-Shafer’s theory, or
evidence theory [8]. They applied the classification process on a training set of
81 lesions: 61 benign lesions (nevi) and 20 malignant lesions (melanoma) and a
test set of 209 lesions: 191 nevi and 18 melanoma [8].
1 We gratefully thank H. Ganster and A. Pinz for making the database and their

segmentation masks available to us.
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Ganster et al. [5] presented a system where as initial step the binary mask of
the skin lesion was determined by several basic segmentation algorithms com-
bined together with a fusion strategy [5]. The algorithms used to segment the
lesion are: global thresholding, dynamic thresholding, and a 3-D color clustering
concept [5]. A set of features was then calculated to describe the malignancy
of a lesion: global features (size and shape descriptors), color features and local
features [5]. Significant features were then selected from this set by application
of statistical feature subset selection methods [5]. The classification experiments
were performed with a 24-NN classifier based on the derived features [5]. A no-
table characteristic of this work is the large dimension of the database. They had
at their disposal overall 5363 skin lesion images, categorized into three classes.
The three classes are: clearly benign lesions, dysplastic lesions and malignant
lesions [5]. The training set for the classifier was a set of 270 lesions (90 images
for each class). The test set was the entire database of 5363 lesions in three
categories [5]. They obtained a mean recognition rate of 61%. To the best of our
knowledge, this is the largest existing database on skin lesions, and these results
constitute the state of the art in the field. This is the database on which we ran
our experiments, and the results with which we compare our performance.

3 Spin Glass - Markov Random Fields

Consider a visual class Ωj and a set of k observations {x1 . . .xk}, x ∈ �m, that
we consider random samples from the underlying, unknown, probability distri-
bution P (x) defined on �m. Consider also K different visual classes Ωj , j =
{1, . . .K} (here, K will be 3, corresponding to the visual labels “benign”, “dys-
plastic” and “malignant”). Given an observation x̂, our goal is to classify x̂ as
a sample from Ωj∗ , one of the Ωj visual classes. Using a Maximum A Posteriori
(MAP) criterion we have

j∗ = argmax
j

P (Ωκ|x) = argmax
j

{P (x|Ωj)P (Ωj)}

using Bayes rule, where P (x|Ωj) are the Likelihood Functions (LFs) and P (Ωj)
are the prior probabilities of the classes. Assuming that P (Ωj) are constant, the
Bayes classifier simplifies to

j∗ = argmax
j

P (x|Ωj) . (1)

Spin Glass-Markov Random Fields (SG-MRFs) [2] are a new class of MRFs
which connect SG-like energy functions (mainly the Hopfield one [1]) with Gibbs
distributions via a non linear kernel mapping. The resulting model overcomes
many difficulties related to the design of fully connected MRFs, and enables to
use the power of kernels in a probabilistic framework. The SG-MRF probability
distribution is given by

PSG−MRF (x|Ωj) =
1
Z

exp [−ESG−MRF (x|Ωj)] , (2)
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Z =
∑
{x}

exp [−ESG−MRF (x|Ωj)] , (3)

with

ESG−MRF = −
pj∑

µ=1

[
K(x, x̃(µ))

]2
, (4)

where the function K(x, x̃µ) is a Generalized Gaussian kernel [11]:

K(x, y) = exp{−ρda,b(x, y)} , da,b(x, y) =
∑

i

|xa
i − ya

i |b

and {x̃µ}pj

µ=1, j ∈ [1, K] are a set of vectors selected (according to a chosen ansatz,
[2]) from the training data that we call prototypes. The number of prototypes
per class must be finite, and they must satisfy the condition:

K(x̃i, x̃k) = 0 , (5)

for all i, k = 1, . . . pj, i �= k and j = 0, . . .K (the interested reader can find a
detailed discussion regarding the derivation and properties of SG-MRF in [2]).
Thus, the Bayes classifier (1) will become

j∗ = argmin
j

ESG−MRF (x|Ωj) . (6)

4 Support Vector Machines

Support Vector Machines are state-of-the-art large margin classifiers which have
gained popularity within visual pattern recognition. Here we provide a brief
review of the theory behind this type of algorithm. For a more detailed treatment,
we refer to [12].

Suppose we are in the two class case. Consider the feature vector x ∈ �N and
its class label y ∈ {−1, +1}. Let (x1,y1), (x2,y2), . . . ,(xm,ym) denote a given set
of m training examples. If we assume that the two classes are linearly separable,
there exists a linear function

f(x) = w · x + b (7)

such that for each training example xi, it yields f(xi)≥ 0 for yi = +1 and
f(xix)≤ 0 for yi = −1. The optimal separating hyperplane is the one which has
maximum distance to the closest points in the training set. Mathematically this
hyperplane can be found by solving a constrained minimization problem using
Lagrange multipliers αi (i = 1, . . . , m). It results in a classification function

f(x) = sgn (
i=m∑
i=1

αiyiw · x + b) , (8)
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where αi and b are found by using an SVC learning algorithm [12]. It turns out
that a small number of the αis are different from zero; their corresponding data
xi are called support vectors [12].

SVM can be extended to non-linear problems by using a non-linear operator
Φ(·) to map the input feature vectors xi from the original �N into a higher
dimensional feature space H by x→ Φ(x) ∈ H. Here the mapped data points
of the two classes become linearly separable. Assuming there exists a kernel
function K associated with the inner product of the desired nonlinear mapping
such that K(x,y) = Φ(x) · Φ (y), then a non linear SVM can be obtained by
replacing x · y by the kernel K(x,y) in the decision function, obtaining then

f(x) = sgn (
i=m∑
i=1

αiyiK(xi, x) + b) . (9)

This corresponds to constructing an optimal separating hyperplane in the feature
space. In this paper we consider four kernel types:

Polynomial kernel (“poly”) K(x, y) = (γ ∗ x · y)d

Generalized Gaussian kernel (“gengauss”) K(x, y) = exp { − γ ∗ |xa − ya|b}
Gaussian kernel (“gauss”) K(x, y) = exp { − γ ∗ |x − y|2}
Chi-squared kernel (“chi”) K(x, y) = exp { − γ ∗ χ2(x, y)} .

5 Experiments

In this section we present experiments that show the effectiveness of kernel meth-
ods for melanoma recognition. To this purpose, in a preliminary step, we ran a
first series of experiments for feature selection. Then we used the selected fea-
tures for an extensive set of classification experiments. In the rest of the section
we describe the database used (section 5.1), the experimental setup (section 5.2)
and our experimental findings (section 5.3).

5.1 Database

We performed our experiments on the database created by the Department of
Dermatology of the Vienna General Hospital [5]. The whole database consists
of 5380 skin lesion images, divided into three classes: 4277 of these lesions are
classified as clearly benign lesions (Class 1), 1002 are classified as dysplastic
lesions (Class 2) and 101 lesions are classified as malignant melanomas (Class 3).2

The lesions of the classes 2 and 3 were all surgically excised and the ground truth
was generated by means of histological diagnosis [5]. In order to have statistically
significant results, we ran experiments with five different partitions, then we
calculated the mean and the standard deviation of the obtained recognition
rates. This procedure has been adopted for all the experiments reported here.
2 These numbers are not perfectly coincident with those reported in [5], where the

database is said to be of 5363 images, but this difference should not affect the
comparison between the two algorithms.
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5.2 Experimental Setup

The three key components for an automated melanoma recognition algorithm
are: segmentation/preprocessing, features extraction and classification. We de-
scribe below the general approach followed in this paper for each of these steps:

Segmentation/preprocessing: Following the approach proposed in [5], we didn’t
implement any preprocessing step such as color normalization or hair removal.
As for the segmentation procedure, we used two different methods. The first
consists in simply cutting all the images with the help of a common image
editor software, selecting for each image the smallest rectangle containing the
lesion and keeping out as much skin as possible. We call the resulting images
“hand-segmented”. The second method is the one developed by Ganster et al.
[5]. It consists of a binary mask determined by several segmentation algorithms
combined together with a fusion strategy. We call the resulting images “mask-
-segmented”. An example of the images obtained by these two segmentation
techniques is in Fig.1. Running experiments on these two types of images allows
us to explore how the classification performance is affected by the quality of the
segmentation process.

Feature Extraction: In the ABCD rule, the color variegation and the dermoscopic
structures in the skin lesion are two of the discriminant characteristics for clinical
melanoma recognition, thus we decided to use CH and MFH as features able
to retain chromatic and textural information respectively. The color histogram
was computed by discretizing the colors within the image and counting the
number of pixels for each color. We ran several experiments for selecting the
best features, namely using hue, rg, RG, RB and GB color histograms. The
resolution of the bin axes was varied for each representation consisting of 8, 16,
32, 64 (for bidimensional histograms we chose the resolution of each axis with
the same bin value). We found that the GB representation obtained the best
results for all the bin values, thus we used it in all the following experiments.

The main idea of MFH is to calculate multidimensional histograms of the
response of a vector of receptive fields. A MFH is determined once we chose the
local property measurements (i.e., the receptive field functions), which determine
the dimensions of the histogram, and the resolution of each axis. We converted
originally RGB images to gray-scale and then we used two different kinds of
MFH representation: the first consisted in Gaussian derivatives along x and y
directions and with σ = 1.0 (DxDy); the second consisted in Laplacian Gaussian
operator with σ1 = 1.0, 1.5, 3.0, and σ2 = 2.0, 3.0, 6.0 respectively (Lp2σ). The
bin axes’ resolution was varied for each representation consisting of 8, 16, 32, 64
for Gaussian-filter MFH and 16, 32 for Laplacian-filter MFH.

Classification: We used SG-MRF and SVM algorithms (see section 3 and 4 re-
spectively). For SG-MRF we learned the kernel parameters during the training
stage using a leave-one-out strategy. For SVM we used the four kernel types
described in section 4. The kernel parameters were chosen via cross validation.
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(a) (b) (c)

(d) (e) (f)

Fig. 1. Examples of skin lesion’s images used: (a) image of a benign lesion, (b) image
of a dysplastic lesion,(c) image of a malignant lesion. (d) shows an example of an entire
image, (e) the same image hand-segmented, (f) the same image mask-segmented.

All the experiments were performed respecting the procedure reported by
Ganster et al. [5]. The training set consisted of 270 images (90 for each class);
the test set consisted of the whole database [5]. Note that training and test set
are not disjoint; once again we underline that this follows the procedure proposed
in [5] which allows for benchmarking.

5.3 Experimental Results

A first set of experiments was ran using CH with GB. A second set of exper-
iments was ran with MFH with DxDy and Lp2σ representations as features.
The obtained recognition rates for hand-segmented and mask-segmented images
using SG-MRF and SVM, with both features types are reported in Table 1. Re-
sults for each class are averaged on five partitions. We also report the average
of the recognition rate obtained class by class (“Mean Class”), and the overall
recognition rate (“Overall”). For sake of clarity we report the results obtained
in [5] too; note that these results were obtained on a single run.

A first comment is that SVM obtains the best result with respect to Ganster’s
method and SG-MRF, for both feature types and for both segmentation strate-
gies. The best result, in terms of overall recognition rate, is of 82.5%, obtained
using the generalized Gaussian kernel, MFH features and mask-segmented im-
ages; comparable results are obtained with color features, selected kernels and
on hand-segmented images. The best result obtained by using SG-MRF is of
49.5%, obtained using mask-segmented images and MFH features; finally, the
best performance obtained by using the Ganster’s method is of 58%. These re-
sults clearly show the effectiveness of SVMs for melanoma recognition. A second
comment is that SVM performance varies considerably depending on the kernel
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type used. For instance, using color features and hand-segmented images, the
overall recognition rate goes from a minimum of 59.0% for the Gaussian kernel
to a maximum of 76.0% for chi-squared kernel. A similar behavior is observed
by using mask-segmented images, and on textural features. It is also interesting
to note that with both segmentation techniques and feature types, for the over-
all recognition rate, the kernels which obtains the worst performances tend to
have the highest standard deviations, while the kernel with the best performance
has the smallest one. This illustrates the importance of doing kernel selection
in the training phase; the low standard deviation of the SVM’s best results also
shows the stability of our findings. By comparing the hand-segmented overall
best result with the mask-segmented one, we can see an improvement in recog-
nition rate and stability passing from the first to the second, for both feature
types. This is an experimental proof of the importance of using a sophisticated
segmentation method. A final remark should be made on the poor performance

Table 1. Recognition results obtained by Ganster et al [5], with SG-MRF and SVM
methods using different kernels, for hand-segmented and mask-segmented images and
using CH and MFH as features. We report the recognition rates for the three classes,
the mean and the overall recognition rates. Results obtained with SG-MRF and SVM
are mean values from five different runs with their standard deviations. Class 1, Class
2, Class 3 correspond to the benign, dysplastic and malignant lesions respectively.

Class 1 Class 2 Class 3 Mean Class Overall
Ganster et al. [5] (%) 59 53 73 61 58

CH features

hand

SG-MRF (%) 43.2 ± 4.5 41.2 ± 2.1 95.1 ± 1.6 59.8 ± 17.6 46.1 ± 5.6
poly 91.7 ± 4.9 9.8 ± 7.3 5.5 ± 0.5 35.7 ± 28.0 74.9 ± 2.8

SVM gauss 65.7 ± 17.1 31.6 ± 16.0 49.5 ± 26.0 48.9 ± 9.8 59.0 ± 10.3
(%) gengauss 89.8 ± 20.4 15.6 ± 13.6 82.6 ± 14.6 62.7 ± 23.6 75.9 ± 14.0

chi 90.0 ± 20.2 15.0 ± 12.3 89.1 ± 0.0 64.7 ± 24.9 76.0 ± 13.7

mask

SG-MRF (%) 48.6 ± 4.2 38.8 ± 3.4 94.1 ± 3.4 60.5 ± 17.0 47.7 ± 2.9
poly 80.1 ± 13.0 15.7 ± 13.7 29.5 ± 20.4 41.8 ± 19.6 67.1 ± 7.8

SVM gauss 71.9 ± 11.1 24.8 ± 12.7 45.0 ± 28.5 47.2 ± 13.6 62.6 ± 6.2
(%) gengauss 96.2 ± 4.0 11.0 ± 1.8 89.5 ± 0.9 65.6 ± 27.4 80.2 ± 2.8

chi 68.6 ± 17.7 22.4 ± 7.5 62.6 ± 19.7 51.2 ± 14.5 59.9 ± 12.9
MFH features

hand

SG-MRF (%) 39.2 ± 4.1 42.2 ± 3.1 94.5 ± 2.9 58.6 ± 18.0 40.8 ± 2.8
poly 85.3 ± 18.3 9.7 ± 8.5 19.8 ± 22.9 38.3 ± 23.7 66.9 ± 13.1

SVM gauss 55.7 ± 13.9 31.6 ± 17.1 54.1 ± 19.4 47.1 ± 7.8 51.1 ± 8.6
(%) gengauss 96.7 ± 2.8 11.7 ± 3.0 89.7 ± 0.9 66.0 ± 27.2 80.7 ± 1.7

chi 80.8 ± 2.3 23.1 ± 4.0 93.1 ± 1.4 65.7 ± 21.6 70.3 ± 1.5

mask

SG-MRF (%) 49.3 ± 5.1 45.4 ± 4.0 94.5 ± 1.8 63.1 ± 15.7 49.5 ± 3.9
poly 80.5 ± 4.2 28.5 ± 14.9 22.0 ± 19.1 43.7 ± 18.5 69.7 ± 3.8

SVM gauss 80.9 ± 3.6 27.2 ± 13.5 25.3 ± 23.0 44.5 ± 18.2 69.8 ± 3.7
(%) gengauss 99.4 ± 0.1 9.6 ± 0.4 89.3 ± 0.4 66.1 ± 28.4 82.5 ± 0.1

chi 96.7 ± 0.4 13.0 ± 1.6 90.5 ± 0.5 66.7 ± 26.9 81.0 ± 0.2
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Table 2. Confusion matrices for different classification methods. Top left, Ganster’s
method [5]; top right, clinical diagnosis performed from expert dermatologists of the
Department of Dermatology at the Vienna General Hospital [5] . Middle left, SVM
results with the “chi” kernel and GB CH feature for hand-segmented images; middle
right, SVM results with the “gengauss” kernel and GB CH feature for mask-segmented
images. Bottom left, SVM results with the “gengauss” kernel and MFH feature for
hand-segmented images; bottom right, SVM results with the “gengauss” kernel and
MFH feature for mask-segmented images. The number of images reported are mean
value of the number obtained from five different partitions. Class 1, class 2 and class
3 identify the three classes corresponding to benign, dysplastic and malignant lesions
respectively.

Ganster et al [5] Clinicians
Assigned Assigned

True class 1 class 2 class 3 True class 1 class 2 class 3
class 1 2500 1347 410 class 1 4161 94 9
class 2 324 531 155 class 2 42 960 8
class 3 14 12 70 class 3 6 19 78

CH hand CH mask
Assigned Assigned

True class 1 class 2 class 3 True class 1 class 2 class 3
class 1 3850.6 259.4 167.0 class 1 4112.6 112.6 50.8
class 2 798.2 150.4 53.4 class 2 874.8 110.0 17.2
class 3 9.8 1.2 90.0 class 3 10.4 0.2 90.4

MFH hand MFH mask
Assigned Assigned

True class 1 class 2 class 3 True class 1 class 2 class 3
class 1 4184.8 45.5 45.8 class 1 4251.8 4.2 20.0
class 2 861.6 116.8 23.6 class 2 901.0 95.8 5.2
class 3 9.8 0.6 90.6 class 3 10.4 0.4 90.2

of SG-MRF. This might be due to the dimension of the training set for each
class; it could be possible that the probabilistic method needs a higher statistic
in order to estimate properly the energy function.

Table 2 reports the confusion matrices for the best results obtained by each
possible combination of (segmentation mask, feature type) and SVMs, plus the
confusion matrix obtain by Ganster and that relative to clinicians’ performance
on the database [5].3 For both segmentatation techniques and feature types, we
see that SVM outperforms Ganster’s method for class 1 and class 3 and it is
comparable with the dermatologists’ performances. It is very interesting to note
that, in contrast, SVM performs poorly on class 2, which corresponds to dys-
plastic lesions. This might be explained considering that here we are using only
one feature type for each set of experiments, while Ganster used a selection of

3 For more details on the number of images used in the these last two confusion
matrices we refer the reader to [5].
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different features and dermatologists used the ABCD rule. It is thus possible
that just color/textural information is not discriminant enough in order to rec-
ognize correctly dysplastic lesions, while both feature types seem to be effective
for separating benign and malignant lesions.

6 Conclusions

In this paper we presented a learning approach to melanoma recognition. To this
purpose, we proposed two kernel-based classification algorithms: a probabilistic
one, spin glass-Markov random fields, and a discriminative one, support vector
machines. Both methods have proved successful on visual recognition problems
like object recognition. The two classifiers were tested on a database of more
than 5000 images, using two feature types and two segmentation methods. Our
results show that SVM obtains an improvement in recognition rate of more than
20% compared to what reported in [5], which to our knowledge constitutes the
state of the art in the field. Moreover, on two classes out of three, SVM achieves
recognition results comparable to those obtained by skilled clinicians.

This work can be extended in many ways: first, we plan to repeat the experi-
ments presented here on different partitions of the Ganster’s database (disjoint
training and test set, several partitions, varying number of images in training
and test set), so to assess better our method’s performance and the database at
the same time. Second, we plan to conduct similar experiments using shape de-
scriptors, and finally to experiment with cue integration schemes, in order to test
the effectiveness of different types of information and eventually to reproduce
the ABCD method followed by the dermatologists in every day clinical practice.
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Abstract. A computer-aided diagnosis (CAD) method is reported that
allows the objective identification of subjects with connective tissue dis-
orders from 3D aortic MR images using segmentation and independent
component analysis (ICA). The first step to extend the model to 4D (3D
+ time) has also been taken. ICA is an effective tool for connective tissue
disease detection in the presence of sparse data using prior knowledge to
order the components, and the components can be inspected visually.

3D+time MR image data sets acquired from 31 normal and connec-
tive tissue disorder subjects at end-diastole (R-wave peak) and at 45% of
the R-R interval were used to evaluate the performance of our method.
The automated 3D segmentation result produced accurate aortic surfaces
covering the aorta. The CAD method distinguished between normal and
connective tissue disorder subjects with a classification accuracy of 93.5 %.

1 Introduction

Aortic aneurysms and dissections are the 15th leading cause of death in the the
U.S., representing 0.7 % of all deaths in 2004 [1]. Persons with certain connec-
tive tissue disorders, such as Marfan’s syndrome and Familial Thoracic Aortic
Aneurysm syndrome are at increased risk of developing aortic aneurysm and
dissection, which makes an early detection very important .

This study is approaching cardiovascular disease diagnosis using magnetic
resonance (MR) imaging. Producing manual outlining of the aorta in 3D images
requires expert knowledge and is a tedious and time-consuming task. Detection of
connective tissue disorder is based on a crude diameter measure of the ascending
aorta from a single 2D MR-slice. Figure 1 shows three 2D slices of a typical 3D
cardiac MR images with manually traced aorta contours.

The aortic segmentation of computed tomography (CT) and MR images has
already undergone a lot of research. Rueckert [2] used Geometric Deformable
Models (GDM) to track the ascending and descending aorta. Behrens [3] ob-
tained a coarse segmentation using a Randomized Hough Transform (RHT).

R.R. Beichel and M. Sonka (Eds.): CVAMIA 2006, LNCS 4241, pp. 13–24, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. Three sample 2D slices of a typical aorta candy-cane MR image with manually
traced contours outlining aortic lumen

Bruijne [4] introduced Adapting Active Shape Models (ASM) for tubular struc-
ture segmentation. Subasic [5] utilized the level-set algorithm for segmentation
of abdominal aortic aneurysm (AAA). Though aortic segmentation has been
repeatedly attempted in the past, we believe this is the first study investigat-
ing its use for connective tissue detection. We report a computer-aided diagnosis
(CAD) method for objective identification of subjects with connective tissue dis-
orders from 16-phase 3D+time aortic MR images using independent component
analysis (ICA).

2 Methods

Our CAD method consists of three main stages – aortic segmentation, landmark-
ing of the aortic shape and connective tissue disorder diagnosis using ICA. This
paper focuses on the ICA-based diagnosis process. The results of the 3D image
segmentation were reported previously [6] and are provided here for complete-
ness. The surface segmentation of the aortic lumen is obtained with an automatic
3D segmentation method described in Sect. 2.1. ICA is performed on the aortic
3D shape to provide better descriptors that are visually inspectable, for use in
the disease classification step.

2.1 Segmentation

The 3D segmentation algorithm consists of the following three stages:

1. Aortic surface presegmentation. A fast marching level set method yields an
approximate spatial segmentation of the aorta.

2. Centerline extraction. Aortic centerline is obtained by skeletonization.
3. Accurate aortic surface segmentation. Accurate aorta surface results from

the application of a 2D optimal border detection method.

Aortic Surface Presegmentation. A 3D fast marching segmentation method
was used to obtain an approximate aortic surface [7]. Starting with a small
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number of interactively identified seed points within the aorta, the initial surface
Γ propagates in an outward direction with the speed F. The fast marching
segmentation algorithm stops the surface in the vicinity of object boundaries
yielding an approximate object surface.

In order to achieve an accurate segmentation, a skeletonization algorithm [8]
is applied to the result of the approximate segmentation to extract the aortic
centerline. As a last segmentation step, a cylindrical surface graph search method
is used to accurately determine the final luminal surface.

Accurate Aortic Surface Segmentation. Optimal surface detection [9] is
an efficient segmentation algorithm applicable to tubular surfaces such as blood
vessel. The method consists of 1) a coordinate transformation, 2) surface detec-
tion using dynamic programming, 3) mapping of the segmentation result back
onto the original image. This method has been utilized in the reported work.

2.2 Point Distribution Model

A Point Distribution Model (PDM) was built on which independent components
suitable for discrimination were estimated.

The Point Distribution Model of the aorta population was obtained using the
segmentation results. Building the PDM consists of two stages: 1) Automatic
generation of aortic landmarks on the 3D segmentation result, using a generated
template shape with landmarks and a subsequent landmark mapping. A march-
ing cubes algorithm [10] was used to generate triangular meshes, and vertices of
these triangular meshes were used as landmarks.. 2) Capturing the shape vari-
ation by performing independent component analysis on the shape vectors of
the individual aortic instances. After landmarking each resulting shape sample
was represented by a shape vector x = (x1, y1, z1, ..., xm, ym, zm), consisting of
m sets of (x, y, z) coordinates of the landmark points.

2.3 Independent Component Analysis

The ICA approach in this study was based on the assumption that the observed
signal vector x can be described as a vector of n linear mixtures of p indepen-
dent non-gaussian source signals represented by the random vector s. The signal
vector contains the landmarks of an instance of the aorta. The source signals are
assumed centered and of unit variance. The mixture process, performed by the
unknown mixing matrix An×p is governed by

x = A · s (1)

To calculate the original sources a de-mixing matrix Wp×n is introduced by the
following equation.

y = W · x (2)

Estimating the de-mixing matrix W is done by maximizing the belief that the
estimated sources Y are independent sources. The different existing methods find
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projections that maximize some independence measure of the distributions of the
estimated sources. The central limit theorem states that a mixture of signals is
more gaussian distributed than the individual parts. The original sources s can
be recovered except for a scaling factor, if the number of observed signals n are
at least as big as the number of sources p.

Kurtosis. The Kurtosis K of the distribution of a random variable is one mea-
sure of Gaussianity. Kurtosis is included it in this paper because it has some
simple analytical properties. The Kurtosis is defined by

K(x) =
E{x4}
E{x2}2 − 3, (3)

where x is a random variable. It can be shown that the Kurtosis is 0 for a
Gaussian distribution. For practical estimation Kurtosis is far from the optimal
measure due to sensitivity to outliers [11]. For theoretical considerations this
does not pose a problem, and for two random independent variables x and y it
holds that

K(x + y) = K(x) + K(y), (4)
K(cx) = c4K(x), (5)

where c is an arbitrary constant. Let the row vector w be a projection wx on
the input data x, and let the projection vector be bounded by E{(wx)2} = 1. As
stated earlier x is assumed to be generated by the model x = As (1). Let z be
defined by z = wA and observe that E{(wx)2} = wAE{s2}(wA)T = ‖z‖2 = 1,
since the sources are independent and assumed of unit variance.

K(wx) = K(wAs) = K(zs) =
p∑

i=1

z4
i K(si). (6)

To find distributions diverging from the Gaussian distribution, the numerical
value of the Kurtosis can be maximized under the constraint ‖z‖2 = 1. This
can be shown to be the canonical base vectors ±ei, projections on only one
independent source. Intuitively, remembering the constraint ‖z‖2 = 1, it is also
expected that maximizing Kurtosis corresponds to distributing the variance over
fewer components, as values smaller than one raised to the power of four are
reduced even more.

The Number of Source Signals. Maximizing the absolute value of the Kur-
tosis can be interpreted as recovering a projection, that is only directed along
a single of several independent components. Now examining wT x = wT As the
normal assumption in ICA is that An×p satisfies n >= p because in this way no
constraints are imposed on z given by z = wA. Assuming that n < p gives that
wA is only spanning a subspace of R

n, the space of z. This could mean that
some of the minima are not described in this subspace. Denote the subspace of
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z’s space not spanned by wA by V̂p−n×p. The additional constraints on z are
given by (7), where 01×p−n is a vector of zeros due to the orthogonality.

zV̂ T = 01×p−n (7)

The number of constraints under the maximization is bigger than the number
of parameters and thus the earlier described minima can not be reached. The
Kurtosis measure is still favoring distributing the zi’s on as few components as
possible though, and though recovering a true independent component is not
to be expected, the maxima will by this measure be more independent than an
arbitrary linear mixture of the source signals.

To illustrate the properties of maximizing the Kurtosis, an example of a ran-
domly selected mixing matrix A2×3 is chosen. This corresponds to 3 sources but
only two observables. The Kurtosis of the three distributions are also randomly
chosen (8).

A =
[

0.6136 1.0320 0.7604
−0.8242 −0.4344 1.2546

]
K1 = 0.118 K2 = 0.7005 K3 = 2.133. (8)

The projection vector w is rotated from 0 to π and the size is set to match the
constraint E{(wx)2} = 1, z is still defined by z = wA. The result is seen in Fig.
2. The rotation of w giving the maximum Kurtosis is seen to include mainly
one of the three independent components, whereas the two eigenvectors, defined
by the maximum and the minimum of the dash-dotted curve, are mixtures of
comparable fractions of all three independent components. This illustrates the
tendency, that the Kurtosis measure under constraints as without constraints is
better than the PCA measure at isolating a few independent components.

The Algorithm. For recovering the independent components the FastICA al-
gorithm is applied due to its fast convergence and robustness [11]. As mentioned
in Sect. 2.3 the Kurtosis is not very well suited in practical implementations with
only a limited number of samples. The FastICA algorithm is iterative and finds
the components sequentially. The weight vector w is randomly initialized which
influences the obtained solution due to multiple local maxima. Several w’s were
initialized in order to be able to select the one giving the source with the most
desirable properties, namely the best separation between diseased and normal
subjects. The multiple initialization scheme is crucial in finding components well
suited for discrimination.

Ordering Measures. Two different ordering measures are introduced in this
paper. An ordering measure for extraction of the component that separates the
diseased and normals, and an ordering measure that maximizes localization,
which is preferable in the interpretation of the extracted components.

The Fisher discriminant. The hypothesis of this study is that connective tissue
disorder is one of the sources shaping the aorta. Having no exact knowledge
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Fig. 2. w-projections in an over-constrained independent component system. The x-
axis is the rotation of w in radians. The solid line is the calculated Kurtosis with
the maximum illustrated. The dashed lines are representing the fraction of variance
contributed from each independent component. The dash-dotted line is the variance of
the projection along the w-direction.

of the distribution of such a component, it is modeled to be composed of two
normal distributions, one representing the normals and one the diseased offset by
the difference between being diseased and having a normal aorta. As an ordering
measure the Fisher discriminant, evaluating the projection separation the two
populations, is expected to have its maximum at the true source.

The localization of the components. The true sources are believed to be localized
in the sense that the effect of being diseased for instance is expected not to
influence the entire shape of the aorta, but only a part of it close to the heart.
A measure is defined, that focuses on the peaks of the variance, extending a
measure defined in [12] to 3D. The variation of the shape by a given projection
is mapped onto the normals of the mean surface. Peaks with a peak value of over
50% of the maximum peak value are counted and the average volume of these
peaks taken as a measure of how the component has centered its changes to the
shape in these large peaks. The principal components represent global variations
which can be seen in Fig. 3.

Independent Component Analysis on the Aorta. The data is describing
the shape of the aorta and therefore the number of independent source signals is
expected to be rather high. The physical shape of the subject, the gender of the
subject, the height and the age of the subject just to mention a few, could all be
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(a) (b)

Fig. 3. (a) Aortic shape variations captured by the first PCA mode. (b) Shape varia-
tions captured by the second PCA mode. Variance from the mean shape is represented
by colors from blue to red. Notice the big variance in color over the whole aortic surface.

independent sources shaping the aorta. One of our interest divides the subjects
in two groups with or without connective tissue disorder.

The number of dimensions is an important factor because the data is very
sparse. The observed data X in this study have nlandmarks · 3 = 248 · 3 = 744
dimensions when using one phase and 1581 when using two phases of the cardiac
cycle. The number of samples is only 31, 21 normals and 10 diseased. For compu-
tational convenience and because the data is only distributed along these direc-
tions, the data is projected onto the principal components. To reduce the number
of free parameters a constraint is introduced, that only a certain number of the
parameters are allowed to change at a time, during the estimation of the indepen-
dent components. 22 principal components were retained explaining 97.5 % of
the variance. The subspace was divided in 5 (≈ √

22) subspaces each containing
≈ 20% of the variance. Each subspace was initially searched for independent com-
ponents. Subsequently independent combinations of the found projections were
found and combined to form the actual independent components. This approach
proved necessary to avoid overfitting due to the high number of free paramters
compared to the number of samples. In this work this way of constraining dif-
ferent elements is found to give much more robust results than just reducing the
search space by only retaining a few principal components. Setting the 16 least-
variance principal components to zero, were originally chosen as the constraints
on the ICA, which gave a good separation, but a poor ability to generalize.

Due to the reduced number of free dimensions and complex shaping of an
aorta there are probably more sources than dimensions of the observed signal.
Several locally stable projections are found, depending on the initialization of
the algorithm, and it is assumed, based on the discussion in Sect. 2.3, that
the different projections favor different source signals. None of them may fully
describe a true source signal, but it will be more or less represented in every
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projection. This is the motivation for choosing an ordering measure that favors
the components that is believed to describe the sources well. The aortic shape
of each subject after application of ICA is represented by the projection on the
independent components. As the components are chosen with the property to
divide the two populations, ICA is applied again on the (two) most significant
projections to extract more localized components, because we a priori believe
the sources are localized.

2.4 Discrimination Model

The disease detection is based on the scores of the data projected on the inde-
pendent components. A simple quadratic classifier is employed on the scores of
the two most significant independent components. This simple form is reinforc-
ing that the components can be interpreted in clinical terms which has been a
strong motivation for using ICA.

3 Results

3.1 Segmentation Result

3D candy-cane view and outflow tract MR images were acquired and merged
to form a 3D image at the R-wave peak and at the time point of 45% R-R
interval from 31 subjects (21 normal, 10 diseased) with image resolution ranging
from 1.5 × 1.5 × 3.0 mm3 to 2.0 × 2.0 × 6.0 mm3. To assess the accuracy of the
automated 3D segmentation, the aortic surfaces were compared with the expert
tracing outlines. The positioning errors were defined as the shortest distances
between the manually traced surfaces and the computer-determined surfaces in
the 3D aortic images.

The developed segmentation method produced aortic surfaces with subvoxel
accuracy as judged by the signed surface positioning errors of -0.09±1.21 voxel
(−0.15 ± 2.11 mm) and unsigned positioning errors of 0.93±0.76 voxel (1.62 ±
1.25 mm). An example of a typical segmentation result is shown in Fig. 4. The
segmentation result is shown in transverse and coronal views. For each view
shown in the figure, 4 slices were randomly selected from the 3D image. The
volumetric representation of segmentation is shown in Fig. 5.

3.2 Disease Detection Results

To assess the performance of the diagnostic model, two different classification
tasks were performed: 1) Disease status prediction using features generated from
single-phase MR images. 2) Disease status prediction using features generated
from two cardiac phases. Features generated by the ICA were used as input
while expert-defined disease status formed the binary prediction output (nor-
mal/diseased). A leave-one-out validation method was used to evaluate the pre-
dictive classifier performance. Performance was assessed in terms of the sensitiv-
ity, the fraction of correctly identified diseased and the specificity, the fraction
of correctly classified normals.
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(a) (b)

Fig. 4. Automated segmentation result in 4 randomly selected slices; the segmentation
outlines are shown in green. (a) Transverse view. (b) Coronal view.

Fig. 5. Volumetric representation
of the segmentation result
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Figure 7 illustrates the shape variations captured by the first and second
independent components applying ICA on the first phase. The analysis suggests
that the independent components mainly represents the variation along the aor-
tic arch and the ascending aorta. Together they describe a dilation for diseased
subjects which corresponds to the clinical observation that the effect is centered
around the ascending aorta. The distribution of the projection of the data on
the two first independent components, Fig. 6, illustrates that the separation task
can be performed by a simple classifier. Though it always seems possible to find
estimates of independent components dividing the two populations, it is not
guaranteed to generalize to the unseen sample.

The two first independent components for the second phase of the aortic cycle
are more localized, but show similar results.

(a) (b)

Fig. 7. Aortic shape variations observed in the analyzed population. The projection
of the independent components on the normal of the mean shape surface is projected
onto the mean aorta shape. Left corresponds to negative and right to positive varia-
tion. Positive values of the projection correspond to higher likelihood of being healthy.
The diseased subjects (left) have a thicker aortic arch and a dilated ascending aorta.
(a) Shape variations for the first independent component. (b) Shape variations for the
second component.

For the single-phase case, 248 landmarks were automatically generated on
each aortic luminal surface. The quadratic classifier working on two independent
components exhibited a sensitivity of 80%, meaning that 80% of diseased were
diagnosed as such and a specificity of 100%, meaning that all normal subjects
where classified as being normal in the leave-one-out test. The classification
proved worse when using the model on two phases, a sensitivity of only 70%.The
localization ordering measure was designed for only one object and not two
phases and this may have affected the outcome, but tests on more subjects are
required to see if this difference is significant.

The overall results are summarized in Table 1 and Table 2, showing the con-
fusion matrices of the single-phase model and the two-phase model.
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The single-phase model applied to either one of the two phases gives the same
confusion table, but one of the errors in classifying the diseased was for different
subjects, so a combination of the one phase models might actually give an even
better classification. The very encouraging results obtained analyzing a single
phase is the motivation for further exploration analyzing 2 phases and later also
16 phases. An issue that may also make the sensitivity worse than the specificity
could be that the number of diseased is only 10 compared to 21 normals. Though
more laborious, ICA can also be a more specific tool than PCA, when reducing
dimensionality as only two components are needed to feature the classification.
With a prior knowledge of desired features of the component, more task-specific
information can be contained in the independent components than in the vari-
ance ordered principal components by applying a suitable ordering measure.

Table 1. Classification results of the
single-phase model

Predicted
Disease Status Diseased Normal

Diseased 8 2
Normal 0 21

Table 2. Classification results of the
two-phase model

Predicted
Disease Status Diseased Normal

Diseased 7 3
Normal 0 21

4 Discussion and Conclusion

In this study, a computer-aided diagnostic method using ICA to identify sub-
jects with connective tissue disorders from 3D aortic MR images was presented.
Accurate and reliable aortic surfaces were provided by an automated 3D segmen-
tation algorithm which combines a fast marching level set segmentation with an
optimal graph-based border detection.

Independent component analysis in a high-dimensional space with sparse data
was applied to landmarked 3D shapes resulting from the aortic segmentation and
formed a very efficient approach for capturing the structure’s shape variation im-
portant to the classification task. A simple quadratic classifier was efficient for
the simple classification task in the 2D space spanned by the two first indepen-
dent components. ICA is well suited for assisting in the disease diagnostic task
at hand, as it assists in an easily interpretable classification. It is shown that
ICA is a well suited tool for dimensionality reduction, when prior information
about the desired features exist for ordering the components. Two examples of
ordering measures are introduced.

Using 3D MR image data of a single cardiac phase per subject, the classifi-
cation accuracy using a basis of two independent components was 93.5%. The
independent components showed a more localized behavior than the principal
components and could be easier interpreted in terms of shape variation. Earlier
results using a support vector machine for classification demonstrated the im-
portance of utilizing functional information about the aortic motion for the con-
nective tissue disease diagnosis using shape modeling, and our continued effort



24 M.S. Hansen et al.

will be put into benifitt from the second available cardiac phase. For improved
classification accuracy we will also explore the utility of full 4D information (3D
+ 16 cardiac phases) in the near future.
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Abstract. While learning ensembles have been widely used for various
pattern recognition tasks, surprisingly, they have found limited applica-
tion in problems related to medical image analysis and computer-aided
diagnosis (CAD). In this paper we investigate the performance of several
state-of-the-art machine-learning methods on a CAD method for detect-
ing prostatic adenocarcinoma from high resolution (4 Tesla) ex vivo MRI
studies. A total of 14 different feature ensemble methods from 4 different
families of ensemble methods were compared: Bayesian learning, Boost-
ing, Bagging, and the k-Nearest Neighbor (kNN) classifier. Quantitative
comparison of the methods was done on a total of 33 2D sections obtained
from 5 different 3D MRI prostate studies. The tumor ground truth was
determined on histologic sections and the regions manually mapped onto
the corresponding individual MRI slices. All methods considered were
found to be robust to changes in parameter settings and showed signifi-
cantly less classification variability compared to inter-observer agreement
among 5 experts. The kNN classifier was the best in terms of accuracy
and ease of training, thus validating the principle of Occam’s Razor1. The
success of a simple non-parametric classifier requiring minimal training is
significant for medical image analysis applications where large amounts
of training data are usually unavailable.

1 Introduction

Learning ensembles (Bagging [2], Boosting [3], and Bayesian averaging [4]) are
methods for improving classification accuracy through aggregation of several
similar classifiers’ predictions and thereby reducing either the bias or variance of
the individual classifiers [1]. In Adaptive Boosting (AdaBoost) proposed by Fre-
und and Schapire [3] sequential classifiers are generated for a certain number of
trials and at each iteration the weights of the training dataset are changed based
on the classifiers that were previously built. The final classifier is formed using a
weighted voting scheme. With the Bagging [2] algorithm proposed by Brieman,
many samples are generated from the original data set via bootstrap sampling

1 One should not increase, beyond what is necessary, the number of entities required
to explain anything.

R.R. Beichel and M. Sonka (Eds.): CVAMIA 2006, LNCS 4241, pp. 25–36, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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and then a component learner is trained from each of these samples. The predic-
tions from each of these learners is then combined via majority voting. Another
popular method of generating ensembles is by combining simple Bayesian clas-
sifiers [5]. The class conditional probabilities for different attributes or features
can be combined using various different rules (e.g., median, max, min, major-
ity vote, average, product, and weighted average). The drawback of Boosting,
Bagging, and Bayesian learners, however, is that they require training using
labeled class instances. This is an issue in most medical image analysis appli-
cations where training data is usually limited. Consequently there still remains
considerable interest in simple fusion methods such as the k-Nearest Neighbor
(kNN) classifier for performing general, non-parametric classification [5] which
have the advantages of (1) being fast, (2) having the ability to learn from a small
set of examples, and (3) can give competitive performance compared to more
sophisticated methods requiring training.

While several researchers have compared machine learning methods on real
world and synthetic data sets [1,7,8,9,10], these comparison studies have usually
not involved medical imaging data [11]. Warfield et al. proposed STAPLE [6]
to determine a better ground truth estimate for evaluating segmentation algo-
rithms by combining weighted estimates of multiple expert (human or machine
learners) segmentations. Other researchers have attempted to combine multiple
classifiers with a view to improving classification accuracy. Attempts to com-
pare learning ensembles have often lead to contradictory results, partly due to
the fact that the data sets used in these comparisons tend to be application spe-
cific. For instance Wei et al. [11] found that Support Vector Machines (SVMs)
outperformed Boosting in distinguishing between malignant and benign micro-
calcifications on digitized mammograms. Martin et al. [10], however, found that
Boosting significantly outperformed SVMs in detecting edges in natural images.
Similarly, while Quinlan [1] found that Boosting outperformed Bagging, Bauer
and Kohavi [8] found that in several instances the converse was true.

In [4] we presented a computer-aided diagnosis (CAD) method for identifying
lesions on high-resolution (4 Tesla (T)) ex vivo MRI studies of the prostate. Our
methodology comprised of (i) extracting several different 3D texture features at
multiple scales and orientations, (ii) estimating posterior conditional Bayesian
probabilities of malignancy at every spatial location in the image, and (iii) com-
bining the individual posterior conditional probabilities using a weighted linear
combination scheme. In this paper we investigate the performance of 14 differ-
ent ensembles from 4 families of machine learning methods, Bagging, Boosting,
Bayesian learning, and kNN classifiers for this important CAD application. The
motivations for this work were (1) to improve the performance of our CAD al-
gorithm, (2) to investigate whether trends and behaviors of different classifiers
reported in the literature [1,7,8] hold for medical imaging data sets, and (3) to
analyze the weaknesses and strengths of known classifiers to this CAD problem,
not only in terms of their accuracy but also in terms of training and testing
speed, feature selection methods, and sensitivity to system parameters. These
issues are important for (i) getting an understanding of the classification process
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and (ii) because the trends observed for this CAD application may be applicable
to other CAD applications as well.

This paper is organized as follows. Section 2 briefly describes the different
classification methods investigated in this paper. In Section 3 we describe the
experimental setup, while in Section 4 we present and discuss our main results.
Concluding remarks and future directions are presented in Section 5.

2 Description of Feature Ensemble Methods

2.1 Notation

Let D={(xi,ωi) | ωi ∈ {ωT , ωNT }, i∈{1, .., N}} be a set of objects (in our case
image voxels) x that need to be classified into either the tumor class ωT or the
non-tumor class ωNT . Each object is also associated with a set of K features fj ,
for j ∈ {1, .., K}. Using Bayes rule [5] a set of posterior conditional probabilities
P (ωT |x, fj), for j∈{1, .., K}, that object x belongs to class ωT are generated.
A feature ensemble f(x) assigns to x a combined posterior probability of be-
longing to ωT , by combining either (i) the individual features f1, f2, ..., fK , or
(ii) the associated posterior conditional probabilities P (ωT |x, f1), P (ωT |x, f2),..,
P (ωT |x, fK) associated with x, or (iii) other feature ensembles.

2.2 Bayesian Learners

Employing Bayes rule [5], the posterior conditional probability P (ωT |x, f) that
an object x belongs to class ωT given the associated feature f is given as

P (ωT |x, f) =
P (ωT )p(x, f |ωT )

P (ωT )p(x, f |ωT ) + P (ωNT )p(x, f |ωNT )
, (1)

where p(x, f |ωT ), p(x, f |ωNT ) are the a-priori conditional densities (obtained
via training) associated with feature f for the two classes ωT , ωNT and P (ωT ),
P (ωNT ) are the prior probabilities of observing the two classes. Owing to a
limited number of training instances and due to the minority class problem2

we assume P (ωT )=P (ωNT ). Further since the denominator in Equation 1 is
only a normalizing factor, the posterior conditional probabilities P (ωT |x, f1),
P (ωT |x, f2),..., P (ωT |x, fK) can be directly estimated from the corresponding
prior conditional densities p(x, f1|ωT ), p(x, f2|ωT ),..., p(x, fK |ωT ). The individ-
ual posterior conditional probabilities P (ωT |x, fj), for j ∈ {1,2,..,K}, can then
be combined as an ensemble (f(x)=P (ωT |x, f1, f2, ..., fK)) using the rules de-
scribed below.

A. Sum Rule or General Ensemble Method (GEM): The ensemble fGEM (x) is a
weighted linear combination of the individual posterior conditional probabilities

fGEM (x) =
K∑

j=1

λjP (ωT |x, fj), (2)

2 An issue where the instances belonging to the target class are a minority in the data
set considered.
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where λj , for j∈{1, 2, .., K}, corresponds to the individual feature weights. In [4]
we estimated λj by optimizing a cost function so as to maximize the true pos-
itive area and minimize the false positive area detected as cancer by the base
classifiers fj . Bayesian Averaging (fAV G) is a special case of GEM, in which all
the feature weights (λj) are equal.

B. Product rule or Naive Bayes: This assumes independence of the base clas-
sifiers and hence sometimes called Naive Bayes on account of the unrealistic
assumption. For independent classifiers P (ωT |x, fj), for 1≤j≤K, the probabil-
ity of the joint decision rule is given as

fPROD(x) =
K∏

j=1

P (ωT |x, fj). (3)

C. Majority Voting: If for a majority of the base classifiers, P (ωT |x, fj) > θ,
where θ is a pre-determined threshold, x is assigned to class ωT .

D. Median, Min, Max: According to these rules the combined likelihood that x
belongs to ωT are given by the median (fMEDIAN (x)), maximum (fMAX(x)),
and minimum (fMIN (x)) of the posterior conditional probabilities P (ωT |x, fj),
for 1≤j≤K.

2.3 k-Nearest Neighbor

For a set of training samples S={(xα,ωα) | ωα ∈ {ωT , ωNT }, α ∈ {1, .., A}} the
k-Nearest Neighbor (kNN) [5] decision rule requires selection from the set S of
k samples which are nearest to x in either the feature space or the combined
posterior conditional probability space. The final decision for the class label of
x is to choose among the class label that appears most frequently among the k
nearest neighbors of x. Instead of making a hard (in our case binary) decision
with respect to x, as in the traditional kNN approach [5], we instead assign a
soft likelihood that x belongs to class ωT . Hence we define the classifier as

fNN (x) =
1
k

k∑
γ=1

e
−||Φ(x)−Φ(xγ )||

σ , (4)

where Φ(x) could be the feature vector [f1(x), f2(x), ..., fK(x)] or posterior con-
ditional probability vector [P (ωT |x, f1), P (ωT |x, f2), ..., P (ωT |x, fK)] associated
with x, ||·|| is the L2 norm or Euclidean distance, and σ is a scale parameter
that ensures that 0 ≤ fNN (x) ≤ 1.

2.4 Bagging

The Bagging algorithm (Bootstrap aggregation) [2] votes classifiers generated
by different bootstrap samples (replicates). For each trial t ∈ {1,2,..,T }, a train-
ing set St ⊂ D of size A is sampled with replacement. For each bootstrap training
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set St a classifier f t is generated and the final classifier fBAG is formed by aggre-
gating the T classifiers from these trials. To classify new instance x, a vote for
each class (ωT , ωNT ) is recorded by every classifier f t and x is then assigned to
the class with most votes. Bagging however improves accuracy only if perturbing
the training sets can cause significant changes in the predictor constructed [2].
In this paper Bagging is employed on the following base classifiers.

A. Bayes: For each training set St the a-priori conditional density pt(x, fj |ωT ),
for j ∈ {1, 2, .., K}, is estimated and the corresponding posterior conditional
probabilities P t(ωT |x, fj) using Bayes rule (Equation 1) calculated. P t(ωT |x, fj),
for j ∈ {1, 2, .., K}, can then be combined to obtain f t(x) using any of the fusion
rules described in Section 2.2.The Bagged Bayes classifier is then obtained as,

fBAG,BAY ES(x) =
1
T

T∑
t=1

(f t(x) > θ), (5)

where θ is a predetermined threshold, and fBAG,BAY ES(x) is the likelihood
that the object belongs to class ωT . Note that, for class assignment based on
fBAG,BAY ES(x) > 0.5 we obtain the original Bagging classifier [2].

B. kNN: The stability of kNN classifiers to variations in training set makes
ensemble methods obtained by bootstrapping the data ineffective [2]. In order
to generate a diverse set of kNN classifiers with (possibly) uncorrelated errors we
sample the feature space F={f1, f2, ..., fK} to which the kNN method is highly
sensitive [12]. For each trial t={1,2,..,T }, a bootstrapped feature set F t ⊂ F
of size B≤K is sampled with replacement. For each bootstrap feature set F t a
kNN classifier f t,NN is generated (Equation 4). The final bagged kNN classifier
fBAG,kNN is formed by aggregating f t,NN , for 1≤t≤T , using Equation 5.

2.5 Adaptive Boosting

Adaptive Boosting (AdaBoost) [3] has been shown to significantly reduce the
learning error of any algorithm that consistently generates classifiers whose per-
formance is a little better than random guessing. Unlike Bagging [2], Boosting
maintains a weight for each instance - the higher the weight, the more the in-
stance influences the classifier learned. At each trial the vector of weights is
adjusted to reflect the performance of the corresponding classifier. Hence the
weight of misclassified instances is increased. The final classifier is obtained as
a weighted combination of the individual classifiers votes, the weight of each
classifier’s vote being determined as a function of its accuracy.

Let wt
xγ

denote the weight of instance xγ ∈ S, where S ⊂ D, at trial t. Initially
for every xγ , we set w1

xγ
= 1

A , where A is the number of training instances. At
each trial t ∈ {1, 2, .., T}, a classifier f t is constructed from the given instances
under the distribution wt

xγ
. The error εt of this classifier is also measured with

respect to the weights, and is the sum of the weights of the instances that it
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mis-classifies. If εt ≥ 0.5, the trials are terminated. Otherwise, the weight vector
for the next trial (t+1) is generated by multiplying the weights of instances
that f t classifies correctly by the factor βt= εt

1−εt and then re-normalizing so that∑
xγ

wt+1
xγ

=1. The Boosted classifier fBOOST is obtained as

fBOOST (x) =
T∑

t=1

f tlog(
1
βt

) (6)

In this paper the performance of Boosting was investigated using the following
base learners.

A. Feature Space: At each iteration t, a classifier f t is generated by selecting
the feature fj , for 1≤j≤K, which produces the minimum error with respect to
the ground truth over all training instances for class ωT .

B. Bayes: At each iteration t, classifier f t is chosen as the posterior conditional
probability P t(ωT |x, fj), for j∈{1, 2, .., K}, for which P t(ωT |x, fj) ≤ θ results
in the least error with respect to the ground truth, where θ is a predetermined
threshold which.

C. kNN: Since kNN classifiers are robust to variations of the training set, we
employ Boosting on the bootstrap kNN classifiers f t,NN generated by varying
the feature set as described in Section 2.4. At each iteration t the kNN classi-
fier with the least error with respect to the ground truth is chosen and after T
iterations the selected f t,NN are combined using Equation 6.

3 Experimental Setup

3.1 Data Description and Feature Extraction

Prostate glands obtained via radical prostatectomy were imaged using a 4 T
Magnetic Resonance (MR) imager using 2D fast spin echo at the Hospital at
the University of Pennsylvania. MR and histologic slices were maintained in the
same plane of section. Serial sections of the gland were obtained by cutting with
a rotary knife. Each histologic section corresponds roughly to 2 MR slices. The
ground truth labels for tumor on the MR sections were manually generated by
an expert by visually registering the MR with the histology on a per-slice basis.
Our database comprised of a total of 5 prostate studies, with each MR image
volume comprising between 50-64 2D image slices. Ground truth for the cancer
on MR was only available on 33 2D slices from the 5 3D MR studies. Hence
quantitative evaluation was only possible on these 33 2D MR sections.

After correcting for MR specific intensity artifacts [4], a total of 35 3D tex-
ture features at different scales and orientations and at every spatial location in
the 3D MRI scene were extracted. The 3D texture features included: first-order
statistics (intensity, median, standard and average deviation), second order Har-
alick features (energy, entropy, contrast, homogeneity and correlation), gradient



Comparing Ensembles of Learners: Detecting Prostate Cancer 31

(directional gradient and gradient magnitude), and a total of 18 Gabor features
corresponding to 6 different scales and 3 different orientations. Additional details
on the feature extraction are available in [4].

3.2 Machine Training and Parameter Selection

Each of the classifiers described in Section 2 are associated with a few model pa-
rameters that need to be fine-tuned during training for best performance. For the
methods based on Bayesian learning we need to estimate the prior conditional
densities p(x,fj | ωT ), for 1 ≤ j ≤ K, by using labeled training instances. Changes
in the number of training instances (A) can significantly affect the prior condi-
tional densities. Other algorithmic parameters include (1) an optimal number of
nearest neighbors (k) for the kNN classifier, (2) an optimal number of iterations
(T ) for the Bagging and Boosting methods, and (3) optimal values for the feature
weights for the GEM technique which depends on the number of training samples
used (A). These parameters were estimated via a leave-one-out cross validation
procedure. Except for the Bagging and Boosting methods on the kNN classi-

fiers where each kNN classifier was trained on 1
6
th (6) and 1

3
rd (12) of the total

number of extracted features (35), all other classifiers were trained on the entire
feature set. The Bayesian conditional densities were estimated using 5 training
samples from the set of 33 2D MR slices for which ground truth was available.
In Table 1 are listed the values of the parameters used for training the 14 differ-
ent ensemble methods. The numbers in the parenthesis in Table 1 indicate the
number of ensembles employed for each of the 4 families of learning methods.

Table 1. Values of parameters used for training the different ensemble methods and
estimated via the leave-one-out cross validation procedure

Method kNN (2) Bayes Bagging (2) Boosting (3)
Features Bayes (7) kNN Bayes kNN Features Bayes

Parameter k=8 k=8 - T=50,k=8 T=10 T=50,k=8 T=50 T=50
No. of features 35 35 35 6,12 35 6,12 35 35

3.3 Performance Evaluation

The different ensemble methods were compared in terms of accuracy, execution
time, and parameter sensitivity. Varying the threshold θ such that an instance
x will be classified into the target class if f(x) ≥ θ leads to a trade-off between
sensitivity and specificity. Receiver operating characteristic (ROC) curves (plot
of sensitivity versus 100-specificity), were used to compare classification accuracy
of the different ensembles using the 33 MR images for which ground truth was
available. A larger area under the ROC curve implies higher accuracy of the
classification method. The methods were also compared in terms of time required
for classification and training. Precision analysis was also performed to assess
possible over-fitting and parameter sensitivity of the methods compared against
the inter-observer agreement of 5 human experts.
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4 Results and Discussion

4.1 Accuracy

In Figure 1(a) are superposed the ROC curves for Boosting using (i) all 35 fea-
tures, (ii) the posterior conditional probabilities associated with the features in
(i), and (iii) the kNN classifiers trained on subsets of 6 and 12 features. Boost-
ing all 35 features and the associated Bayesian learners results in significantly
higher accuracy compared to Boosting the kNN classifiers. No significant dif-
ference was observed between Boosting the features and Boosting the Bayesian
learners (Figure 1(b)), appearing to confirm previously reported results [8] that
Boosting does not improve Bayesian learners.

Figure 2(a) reveals that Bagging Bayes learners performs better compared
to Bagging kNN classifiers trained on reduced feature subsets. Figure 2(b), the
ROC plot of 50 kNN classifiers trained on a subset of 6 features, with the cor-
responding Bagged and Boosted results overlaid, indicates that Bagging and

(a) (b)

Fig. 1. ROC plots of (a) Boosting features, Bayesian learners, and kNN classifiers,
(b) Boosting features and Bayesian learners. The first set of numbers (1,5,10) in the
parenthesis in the figure legends indicate the number of training samples and the second
set of numbers (6,12) shows the number of features used to form the kNN classifiers.

(a) (b) (c)

Fig. 2. ROC plots of (a) all Bagging methods, (b) 50 individual kNN classifiers trained
using 6 features with the corresponding Bagged and Boosted results overlaid, and (c)
different rules for combining the Bayesian learners
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Boosting still perform worse than the best base kNN classifier. Figure 2(c)
shows the ROC curves for the different rules for combining the Bayesian learn-
ers trained using 5 samples. Excluding the product, min, and max rules which
make unrealistic assumptions about the base classifiers, all the other methods
have comparable performance, with the weighted linear combination (GEM)
and Boosting methods performing the best. Further, both methods outper-
formed Bagging. Figures 2(b), (c) suggest that on average Boosting outper-
forms Bagging, confirming similar trends observed by other researchers [1].
Figure 3(a) which shows kNN classifiers built using Bayesian learners per-
form the best, followed by kNN classifiers built using all features, followed
by Boosting, and lastly Bagging. In fact Figure 3(b) which shows the ROC
curves for the best ensembles from each family of methods (Bagging, Boosting,
Bayes, and kNN) reveals that the kNN classifier built using Bayesian learn-
ers yields the best overall performance. This is an extremely significant re-
sult since it suggests that a simple non-parametric classifier requiring minimal
training can outperform more sophisticated parametric methods that require
extensive training. This is especially pertinent for CAD applications where
large amounts of training data are usually unavailable. Table 2 shows Az val-
ues (area under ROC curve) for the different ensembles.

Table 2. Az values for different ensembles from the 4 families of learning methods

Method kNN Bayes Bagging Boosting
Features Bayes (GEM) kNN Bayes kNN Features Bayes

Az .943 .957 .937 .887 .925 .899 .939 .936

(a) (b)

Fig. 3. ROC curves for (a) ensembles of kNN classifiers, and (b) the best ensemble
methods from each of the 4 families of classifiers: Bagging, Boosting, Bayes, and kNN
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(a) (b) (c) (d)

Fig. 4. ROC curves for (a) GEM for 3 sets of training data (5, 10, 15 samples), (b)
Boosting on the feature space (T ∈ {20,30,50}), (c) Bagging on kNN classifiers (T ∈
{20,30,50}, number of features=12), and (d) kNN on feature space (k ∈ {8,10,50,100})

4.2 Parameter Sensitivity

The following parameter values were used for the different ensembles: (a) kNN -
k ∈ {8,10,50,100}, (b) Bayes - 4 different training sets comprising 1, 5, 10, and
15 images from the set of 33 2D image slices for which ground truth was avail-
able, and (c) Boosting/Bagging - T ∈ {20,30,50} trials. The results in Table 3
which list the standard deviation in Az values for the 4 families of methods for
different parameter settings and the plots in Figure 4 suggest that all ensembles
considered are robust to changes in parameter settings, and to training. Table 3
and Figure 5 further reveal the high levels of disagreement among five human
experts who independently segmented tumor on the MR slices without the aid
of the corresponding histology.

Table 3. Columns 2-5 correspond to standard deviation in Az values for the different
ensembles for different parameter settings, while column 6 corresponds to the average
standard deviation (%) in manual segmentation sensitivity for 5 human experts

Method kNN Bayes Bagging Boosting Experts
Std. Deviation 1.3×10−3 6.1×10−3 2.7×10−3 7.1×10−6 20.55

Figures 5(a) corresponds to slice of a prostate MRI study and 5(b corresponds
to ground truth for tumor in (a) slices obtained via histology. Figures 5(c) which
represents the overlay of 5 human expert segmentations for tumor on 5(a) clearly
demonstrate (i) high levels of disagreement among the experts (only the bright
regions correspond to unanimous agreement), and (ii) the difficulty of the prob-
lem since all the expert segmentations had significant false negative errors. The
bright areas in Figure 5(d) which represents the overlay of the kNN classifica-
tion on the feature space for k ∈ {10,50,100} (θ=0.5) reveals the precision of the
ensemble for changes in parameter settings.
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(a) (b) (c) (d)

Fig. 5. Slices from (a) a 4 T MRI study, (b) tumor ground truth on (a) determined
from histology, (c) 5 expert segmentations of cancer superposed on (a), (d) result of
kNN classifier for k ∈ {10,50,100} (θ=0.5) superposed on (a). Note (i) lower parameter
sensitivity of ensemble methods compared to inter-expert variability and (ii) higher
accuracy in terms of the crucial false negative errors.

4.3 Execution Times

Table 4 shows average execution times for the ensembles for a 2D image slice
from a 3D MRI volume of dimensions 256×256×50. Feature extraction times
are not included. The parameter values used were: k=10, number of features
K=35, training samples for Bayesian learners (A=5), and number of iterations
for Bagging and Boosting T=30. All computations were performed on a 3.2 GHz
Pentium IV Dell desktop computer (2 GB RAM). The kNN methods required no
training, while Boosting Bayesian learners required the most amount of time to
train. In terms of testing, the Boosting and kNN methods were the fastest while
the Bayesian methods were the slowest. Note however that the time required
to estimate the Bayesian posterior class conditional probabilities is a function
of the dynamic intensity range of the different features employed, which in our
case was 0-4095. Note also that columns 3, 6, and 9 do not include the time for
computing the posterior class conditional probabilities.

Table 4. Execution times (training and classification) for the different ensemble meth-
ods. For brevity only one of the Bayesian methods (GEM) has been shown.

Method kNN Bayes Bagging Boosting
Features Bayes (GEM) kNN Bayes kNN Features Bayes

Training - - 0.86 18.15 25.65 18.15 35.33 77.82
Classification 0.98 1.59 131.21 16.71 34.99 1.59 1.09 0.60

5 Concluding Remarks

In this paper we compared the performance of 14 ensembles from 4 families
of machine learning methods: Bagging, Boosting, Bayesian learning, and kNN,
for detecting prostate cancer from 4 T ex vivo MRI prostate studies. The kNN
classifier performed the best, both in terms of accuracy and ease of training, thus
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validating Occam’s Razor. This is an especially satisfying result since an accurate
non-parametric classifier requiring minimal training is ideally suited to CAD
applications where large amounts of data are usually unavailable. All classifiers
were found to be robust with respect to training and changes in parameter
settings. By comparison the human experts had a low degree of inter-observer
agreement. We also confirmed two trends previously reported in the literature, (i)
Boosting consistently outperformed Bagging [1] and (ii) Boosting the Bayesian
classifier did not improve performance [8]. Future work will focus on confirming
our conclusions on larger data sets and with other CAD applications.
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Abstract. We describe a method to accurately assess articular cartilage
morphology using the three-dimensional laser scanning technology. Tra-
ditional methods to obtain ground truth for validating the assessment of
cartilage morphology from MR images have relied on water displacement,
anatomical sections obtained with a high precision band saw, stereopho-
togrammetry, manual segmentation, and phantoms of known geometry.
However, these methods are either limited to overall measurements such
as volume and area, require an extensive setup and a highly skilled oper-
ator, or are prone to artifacts due to tissue sectioning. Alternatively, 3D
laser scanning is an established technology that can provide high resolu-
tion range images of cartilage and bone surfaces. We present a method
to extract these surfaces from scanned range images, register them spa-
tially, and combine them into a single surface representing the articular
cartilage from which volume, area, and thickness can be computed. We
validated the laser scanning approach using a knee model which was
covered with a synthetic articular cartilage model and compared the
computed volume against water displacement measurements. Using this
method, the volume of articular cartilage in five sets of cadaver knees
was compared to volume estimates obtained from segmentation of MR
images.

1 Introduction

Osteoarthritis (OA) is associated with degeneration of cartilage in articulating
joints. It is the most common form of arthritis and a leading cause of disability
in elderly people [1]. Of significant interest in OA research is the accurate as-
sessment of articular cartilage morphology, which includes overall measurements
such as total volume and average thickness and more localized ones such as local
thickness and surface curvature, because it is central to monitoring the progres-
sion of OA, assessing the effectiveness of treatments, and to the development of
computer models for stress-strain analysis of joint motion [2,3].

The challenge in measuring the morphology of articular cartilage arises due
to its thinness, the complexity of its shape, and the spatial variability of its

R.R. Beichel and M. Sonka (Eds.): CVAMIA 2006, LNCS 4241, pp. 37–48, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



38 N.H. Trinh et al.

thickness. The voxel size in the most predominant imaging modality, MR 1, is
typically 0.3-1.0 mm while the average thickness of knee articular cartilage is only
about 1.3-2.5 mm [2]. Thus, typical and otherwise negligible errors in delineating
this thin structure in the presence of low signal to noise ratio, low contrast to
noise ratio, MR artifacts, especially those caused by screws in OA patients under
treatment [2,4], translate to significant relative errors, i.e. a one pixel error could
lead to a 25% change in the measured thickness of the cartilage. This level of
relative error could prevent the use of these measurements for monitoring OA
since changes due to the progression of the disease could potentially be overcome
by the relative error. Therefore, it is imperative to measure the true accuracy
of assessing cartilage morphology so as to correctly interpret the measurements
made from MR imagery.

Traditional techniques for obtaining ground truth to validate the accuracy of
articular cartilage measurements have included (i) water displacement of sur-
gically removed cartilage tissue, (ii) manual segmentation, (iii) microscopic ex-
amination of high resolution scans of anatomical sections obtained with high
precision saws, (iv) computed tomography (CT) arthrography, (v) stereopho-
togrammetry, and (vi) the use of phantoms with known geometry [2]. Some of
these techniques can only measure a restricted set of overall quantities, e.g.,
water displacement of surgically removed tissue can only measure total carti-
lage volume. However, recent studies have suggested that total cartilage volume
is not an accurate metric of cartilage degeneration in OA and that other fac-
tors such as focal volume areas and thickness mapping should also be included
in the assessment [5]. In addition to being limited to volume measurements,
the water displacement method is highly prone to error and requires a highly
skilled technician. Manual segmentation, on the other hand, allows for a variety
of morphological measurements, but is limited by the resolution of MR imaging,
and is subject-dependent with non-negligible inter-observer and intra-observer
variations. CT arthrography suffers the same resolution problem as with MRI
images. Stereophotogrammetry uses multiple cameras and a projected pattern
to retrieve the 3D geometry of surfaces, such as the cartilage [6,3]. However, in
addition to requiring extensive setup to calibrate the cameras, this method also
requires that the specimen be attached to an alignment frame, thus limiting the
number of viewing angles that images can be taken from, possibly missing the
high curvature surface of the femoral cartilage.

We propose to use a 3D laser scanner to interrogate the surface geometry of
knee articular cartilage. A 3D laser scanner, such as the one shown in Figure 1
and used in this project, measures depth by shining a laser on the surface of
the specimen and using a camera to image the laser dot. The coordinates of the
laser dot can be triangulated from its position in the camera’s field of view and
the known geometry between the camera and the laser emitter. The 3D laser
scanning technology is an established technology and has been widely used in
many applications, including modeling, industrial inspection, and reverse engi-

1 MR is the most commonly used non-invasive imaging test for quantification of car-
tilage morphology, mainly due to the superior ability to differentiate soft tissue [4].
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Fig. 1. The ShapeGrabber R© PLM300 Laser Scanner System features a linear motion
range of 300 mm and accuracy of 0.05 mm. The scan head, SG-1000, has a depth field
of 250-900 mm and a depth accuracy of 5.0 µm at the farthest point.

neering [7,8]. Its high precision and reliability together with the availability of
a wide range of algorithms to work with range images make this technology
suitable for determining the morphology of knee cartilage as ground truth for
validating segmentations from various imaging modalities.

Our approach is summarized as follows. First, the bone surface is scanned with
a laser range scanner both with the articular cartilage in place, and after it has
been meticulously removed. The protocol for scanning these surfaces and dissolv-
ing the cartilage is discussed in Section 2. Second, the bone surfaces, which are
implicit in the laser range images, are explicitly reconstructed and represented
as a mesh, Section 3. Third, the top and bottom surfaces of the cartilage are
then extracted, aligned, and combined into a complete 3D mesh representing the
cartilage. Measurements of cartilage volume, surface area, average thickness, as
well as surface curvature, focal thickness, and its spatial variation can be directly
computed from this mesh. The accuracy of this methodology has been validated
on a synthetic cartilage model. Finally, we use our approach to measure vol-
ume of articular cartilage in five sets of cadaver knees and compare to volume
estimates obtained from segmentation of MR images.

(a) (b) (c)

Fig. 2. Photographs of dissected cadaver knee bones. A femur (a) and a tibia (b) are
shown with cartilage intact. Each bone is scanned from 20 different viewing directions,
each of which is represented as a circular dot on the diagram, (c).



40 N.H. Trinh et al.

2 Methods

Specimen: 5 intact fresh frozen human cadaver knees from the right limb (mean
age: 56 years, range: 51-59, 3 males/2 females) were utilized for this study. By
visual inspection there were no indications of ligament injury, meniscal damage,
or osteochondral defects. To facilitate the alignment of scans, we placed fiducial
markers on the bones which could be easily recognized and did not interfere with
the articular cartilage region. Specifically, four dry-wall screws were inserted into
the bone body spanning the four disparate views of each bone, Figure 2(a, b).
The cadaver knees were imaged using MRI and CT before they were dissected
from the surrounding tissue.

Dissolving cartilage off the bone: Knee cartilage was dissolved from the artic-
ular surface by immersing the bone in Clorox R© bleach 5.25% sodium hypochlorite
for 4 to 5 hours. This technique works well for the relatively flat surface of the tibia
but requires additional care for the more curved surface of the femur because by
the time the cartilage is completely dissolved, a portion of soft tissues on the bone
will also be removed. Thus, the femurs were rotated regularly, leaving only the thin
articular cartilage layer in the solution. This additional rotation step causes it to
take longer to dissolve the femoral cartilage, approximately 8 to 9 hours. With
this precaution the technique is reliable and not error-prone, in contrast to the
surgical removal of cartilage tissue which requires a highly skilled technician.

3D Laser Range Scanner: We used a ShapeGrabber R© PLM series laser scan-
ning system from Vitana Corporation, Ottawa, Ontario, Canada. The scan head,
SG-1000, was a high resolution head and had a depth range of 250-900 mm with
corresponding field of view 220-750 mm and a depth accuracy of 5 µm at the far-
thest point. In our experiments, we set the resolution along the scanning direction
to 100 µm and place the specimens approximately 50 cm away from the scanner.
This setting allowed for taking very high resolution range images, recording about
300,000 points per scan, while keeping the scanning time to a reasonable amount,
approximately 2 minutes per scan. Each bone was scanned from 20 views as de-
scribed below, so that together with the set-up time it took about one hour to scan
each bone. Lighting at the scanning site was dimmed to minimize noise due to am-
bient light. In addition to laser range images, the strength of the returning laser
signal provides a “visual” image of the specimen. We use this image to identify
hand-marked painted fiducials in the synthetic model.

Scanning protocol: Since each scan of the laser scanner only creates a “point
cloud” of the surface portion that is visible under the viewing direction, multiple
scans from different directions are necessary to cover the entire bone surface.
The range images thus acquired are then aligned and merged to construct the
full surface, as described in Section 3. Our strategy for selecting the scanning
directions ensures that (i) there is sufficient overlap (at least 30%) between
adjacent scans to make the alignment process reliable, (ii) there is redundant
scans of the cartilage portion of the bone surface to minimize chances of having
holes on the cartilage when the scans are merged, and (iii) the equipment can
be set up quickly. Specifically, the viewing directions were rotations around the
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(a) (b) (c)

(d) (e) (f)

Fig. 3. The synthetic articular cartilage model: (a) Model femur with cartilage, (b)
Model femur without cartilage, (c) Femur cartilage, (d) Model tibia with cartilage, (e)
Model tibia without cartilage, (f) Tibia cartilage

x, y, and z axis, which are orthogonal to the sagittal, coronal, and transverse
planes, respectively, Figure 2(c). Rotations around the z-direction (−135o, −90o,
−45o, 0o, 45o, 90o, 135o, 180o) covered the bone body, while rotations around the
x-direction (−60o, −30o, 0o, 30o, 60o) and y-direction (−60o, −30o, 0o, 30o, 60o,
120o, 150o) gave redundant coverage of the articular surface. The two scans at
120o and 150o, rotating around the y-direction, are to capture the high curvature
portion of the bone surface on the x − z plane. This protocol was used to scan
the bones both before and after the dissolution of articular cartilage.

Synthetic knee cartilage: A synthetic cartilage was constructed in our lab
using Sculpey R© Modelling Compound (Polyform Products Co., Elk Grove Vil-
lage, IL) covering the surface of a “basic knee model” (Saunders Group, Chaska,
MN), simulating the realistic situation as closely as possible, Figure 3. The com-
pound is initially deformable but can become firm and water proof after curing
at 130oC for 15 minutes per 6 mm. We marked the surface with a grid containing
16 crosses using permanent ink. These fiducials were easily recognizable in the
intensity range images and were used to validate the thickness computation.

3 Reconstruction of Cartilage and Bone Surfaces from
Range Data

The laser range scan results in an unorganized cloud of points so that the surface
on which these points lie on is implicit. Since the point clouds from each view are
different, they must be aligned and the aligned points must be connected to form
a mesh representing the surface. A rigid transformation is needed to align each
pair of range images. We use the Polyworks R© IMAlign [9] software to perform
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(a) (b) (c) (d)

(e) (f) (g)

Fig. 4. The range images of a femur from 4 different viewing directions, shown in
different colors (a, b, c, d). These point clouds are aligned using the ICP algorithm to
bring all the images to one common coordinate system, (e). Next the range images are
merged to create a single triangular mesh, which often contains holes, junctions, and
disconnected parts, (f). These topological abnormalities are then removed to create a
simple manifold surface of the bone, (g).

the alignment. The software requires a user to select a minimum of three pairs
of corresponding points between the two scans to determine a rough estimate
of the alignment. It then fine-tunes the alignment using a proprietary variant of
the Iterative Closest Point (ICP) algorithm [10], which iteratively minimizes the
mean distance between the two scans at the overlapping regions. To ensure the
ICP algorithm’s reliability, we divided each image set into groups of adjacent
views and align images in each group separately. The groups are then aligned
following the same procedure as aligning the original scanned images. Although
this procedure theoretically brings all the range images into one common co-
ordinate system, accumulative error due to the incremental alignment can be
significant because the number of images in each set is large. Thus, as a final
step the ICP algorithm is applied on all the range images simultaneously to get
the optimal global alignment.

Next we use Polyworks R© IMMerge to merge the aligned range images into one
single triangular mesh representing the surface, Figure 4. The IMMerge software
determines and discard the outlier points in the range images and creates a
triangular mesh that minimizes the mean distance to the remaining points. To
save processing time, we roughly outline the points close to our area of interest,
the articular cartilage, and set the program to only merge those points.

Holes, cracks, and imperfections in the topology are common problems in
surface construction from range images, particularly for rough surfaces like bones
covered with soft tissues, Figure 4(f). Many methods have been proposed to solve
such problems [11,12,13]. We used the PolyMender algorithm, which is fast and
robust, has efficient memory usage, and is guaranteed to produce a closed surface
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Fig. 5. To eliminate the internal membranes, the object is viewed under 14 different
directions, each represented by a blue dot. Any part of the object not visible under any
of these views is discarded.

that partitions the space into disjoint internal and external volumes [13,14].
However, the algorithm has several known drawbacks.

First, because of its simplistic approach, the patches used to fill in the holes
are not always optimal with respect to the surrounding mesh. Our reconstructed
surface does not suffer from this drawback because the cartilage area is smooth
and well covered with multiple scans, and thus does not contain big holes.

Second, the reconstructed surface may still contain topological redundancies
in the form of cavities, disconnected components, and internal membranes. Since
our goal is to reconstruct a simple manifold surface, we need to address these
issues in details. The problem of cavities and disconnected components can be
solved by discarding all but the largest connected component. To remove the
internal membranes, which are completely covered by the outer shell, we put
the mesh under multiple viewing directions chosen to maximize the coverage of
the surface, Figure 5, and discard triangles that are not visible under any of
those views. Originated from range images, any valid triangle on the surface is
theoretically visible from some viewing direction and thus not affected by this
process. However, because the number of chosen viewing directions is finite, the
process occasionally creates small holes on the surface. A second application of
Polymender typically fixes all the resulting small holes, Figure 4(g).

4 Constructing the Cartilage Volume from the Cartilage
and Bone Surface Meshes

The two surfaces of each knee bone, i.e., with and without cartilage, are aligned
using the ICP algorithm, taking only the bone body as input data, as the two
surfaces differ at the cartilage area. Ideally, the two surfaces should overlap at all
points except for the cartilage area. However, because portions of the surfaces are
reconstructed by PolyMender, which does not always generate optimal patches,
the two surfaces may differ at these common areas. This means that a simple
“volumetric difference” between the two meshes would not yield the shape of
the cartilage. Instead, we rely on an interactive specification of the cartilage
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(a) (b)

(c) (d)

Fig. 6. (a) Articular surface is delineated from the color-coded bone surface by having
an expert user manually outline the region. The thickness unit on the color bar is mm.
(b) shows the segmentation result for the “outer” surface. (c) and (d) show the recon-
structed cartilage surfaces color-coded with thickness measurements for the femoral (c)
and tibial (d) cartilage.

boundary by an expert user who is familiar with the anatomy of human knees.
Specifically, with the bone’s “outer” surface color-coded according to the distance
between the two reconstructed surfaces, the user marks the boundary of the
articular cartilage as a dense collection of points, which are then interpolated
using NURBS curves to get a continuous closed boundary, Figure 6(a). The
interpolated curve is projected orthogonally onto both meshes to segment out
the top and bottom surface patches that enclose the cartilage of the bone. A
band-like mesh is then created to connect the two surface patches and combine
all three into a complete closed triangular mesh of the cartilage. Since the knee
cartilage is anatomically thickest in the center area and gets thinner as it gets
close to the edge, a small error in estimating the boundary of the cartilage
would not significantly affect the overall estimate of the shape and volume of
the articular cartilage.

5 Morphological Quantifications of the Knee Cartilage

Morphological quantifications of the cartilage triangular mesh can be used as
ground truth for validating measurements based on segmentations of MRI images
of the knees. First, the volume of this polyhedron mesh can be accurately com-
puted [15]. Let the mesh have vertices P = {v1, v2, · · · , vn}, where vi = (xi, yi, zi)
and triangular faces F = {f1, f2, · · · , fm}, where fi = (vi

1, v
i
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i
3) and assume
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all the triangular faces are consistently oriented, the volume of the polyhedron
mesh is computed as:
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Second, the thickness of the cartilage is the distance between the two recon-
structed (top and bottom) surface patches of the cartilage. This distance can
be defined (i) by using one surface as the reference surface and computing the
distance of the closest point or (ii) as the distance along the normal at each
point of the reference surface or (iii) by using the distance in the distance trans-
form of the reference surface [6,16,18]. In this paper we adopt the first approach
and use the algorithm in [17]. The triangles of the reference surface are divided
spatially into cubical cells to limit the search space in computing the distance
between a point and the reference surface. The search is limited to only triangles
that belong to the cells in a small neighborhood of the point. This algorithm has
been proven in practice to be faster than the brute-force method and allows for
computing distances between two very large triangular meshes.

6 Results and Discussion

We treated the synthetic knee and cartilage models as if they were from a real ca-
daver. The models were scanned, the scans were aligned and merged, a cartilage
triangular mesh was constructed, and its volume and thickness were computed.
To validate our volume assessment, we measured the volumes of the synthetic
cartilage using water displacement method and compare against the computed
measurements, Table 1. The average discrepancy between the two measurements
is 5.2%. It is not clear to us which method is superior but the volume measure-
ments from the laser scanning method are well within the variability of the water
displacement method.

Table 2 compares the volume measurements of the cadaver knees’ articular
cartilage using the laser scanning method and using manual segmentation of
MR images. In the manual segmentation method, volume was computed by
simply counting the segmented cartilage voxels, and thus may not be accurate.
Nevertheless, the two measurements are of the same order, which signifies the
applicability of the laser scanning method on cadavers.

Table 1. Comparison of volume measurements of articular cartilage using 3D laser
scanner (LS) and by water displacement (WD). The WD values are the measurements
of three trials.

Cartilage type LS Volume (ml) WD Volume (ml) Error (%)
Femoral cartilage 11.8 12.3±0.9 4.0
Tibial cartilage 5.0 4.7±0.2 6.4



46 N.H. Trinh et al.

Table 2. Comparison of volume measurements of femoral (F) and tibial (T) cartilage
using 3D laser scanner and manual segmentation from 3T MR images

Cadaver 971 972 973 974 975
F T F T F T F T F T

Volume - Laser scanner(ml) 14.5 4.9 10.7 5.8 9.4 4.6 2.9 1.9 8.8 3.1
Volume - Manual Seg. (ml) 13.1 5.6 9.3 4.2 10.7 4.8 2.2 1.6 7.2 3.2
Err(%) 9.7 14.3 13.1 29.3 13.8 4.3 24.1 15.8 19.3 3.2

As for validating thickness assessment, we measured the thickness of the car-
tilage model at fiducial points using a caliper and compared against thickness
measurements from the laser scanning method, Table 3 and Figure 7. We note
that at most points the caliper thickness measurements are slightly larger than
those computed from the laser range scans. This is expected because measuring
thickness using a caliper requires manually finding the points on the bottom
surface of the synthetic cartilage that are closest to the fiducial points. This
process is generally difficult, especially when the surface is curvy, and any errors
incurred will only increase the caliper measurement values. Nevertheless, the
average discrepancies between the two measurements for the femoral and tibial
cartilage were 4.5% and 3.6 %, respectively. Given the accuracy and reliability
of the laser scanner (50 µm) is superior to that of the MR imaging and assuming
similar errors in segmentation, computed thickness from laser range scans are
expected to provide ground truth data for MR thickness measurements.

In a recent approach [19] a 3D laser scanner is similarly used to scan the
femur of three porcine knees, both with the cartilage intact and after it had
been dissolved. The result data were then used to validate the B-Spline Snake
method used to segment knee cartilage from MR images. This approach and ours
are similar in utilizing the 3D laser scanner but differ in the following aspects.
First, our method determines a complete 3D mesh of the cartilage instead of
just the thickness map. Second, in our approach it is not required to attach
the specimen to a frame; this allows for more freedom in choosing the scanning
angles and reduces one source of error caused by the physical attachment between
the bone and the frame. In addition, we provide validation of our method on a
synthetic cartilage model.

We have presented a method to accurately assess articular cartilage morphol-
ogy using the 3D laser scanning technology. To use these measurements as ground
truth for segmentations from MR images, we note that care needs to be taken to
preserve the morphological properties of the cartilage between the time of MR
scans and the time of laser scans and during laser scans, e.g., regularly bathing
the bones with physiological saline solution when they are exposed to the air
to prevent the cartilage from drying out. We plan to validate our method for
reproducibility (inter-observer and intra-observer) as well as for accuracy with
more reliable methods to quantify volume and thickness, e.g., coordinate mea-
suring machine. Segmenting the articular surface is currently done manually, but
can be automated by using a marker to outline the cartilage on the bone before
it is scanned. This will potentially reduce the human errors in determining the
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Table 3. Comparison of thickness measurements of femoral (top, Fn) and tibial (bot-
tom, Tn) cartilage using 3D laser scanner (L) and by caliper (C)

Points F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16
L(mm) 1.51 2.08 3.34 3.81 5.18 3.65 4.24 3.95 5.24 4.22 4.24 1.73 4.64 2.35 3.22 1.79
C(mm) 1.50 2.21 3.70 3.80 5.41 3.76 4.67 4.20 5.70 4.58 4.59 1.72 4.65 2.47 3.07 1.79
Err(%) 0.24 5.92 9.65 0.21 4.32 2.99 9.25 5.98 7.98 7.73 7.75 0.64 0.24 4.90 4.64 0.30
Points T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16
L(mm) 2.39 3.52 4.04 4.66 3.38 4.34 3.89 2.55 4.32 3.87 2.94 3.28 3.08 3.06 2.70 3.24
C(mm) 2.44 3.34 4.09 4.67 3.73 4.19 4.19 2.74 4.53 3.93 3.12 3.36 3.23 3.05 2.72 3.29
Err(%) 2.11 5.50 1.12 0.33 9.52 3.61 7.20 6.80 4.79 1.54 5.86 2.23 4.67 0.33 0.84 1.64

Fig. 7. Comparison of thickness measurements of femoral (Fn) and tibial (Tn) cartilage
using 3D laser scanner and by caliper

outline of the cartilage surface. As for surface reconstruction, since the surface
patches produced by Polymender are not optimal, we plan to try other alterna-
tive methods, e.g., [11]. We expect that the 3D laser technology will become a
standard in establishing ground truth data for the comparison of the morpholog-
ical properties of the cartilage to those obtained from other noninvasive imaging
modalities such as MR.
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Abstract. Three-dimensional (3D) and four-dimensional (4D) imaging
of dynamic structures is a rapidly developing area of research in medical
imaging. Non-rigid registration plays an important role for the analysis
of these datasets. In this paper we will show some of the work of our
group using non-rigid registration techniques for the detection of tempo-
ral changes such as growth in brain MR images. We will also show how
non-rigid registration can be used to analyze the motion of the heart
from cardiac MR images.

1 Introduction

The analysis of medical images plays an increasingly important role in many clin-
ical applications. Image registration is a key component in many image analysis
applications. The goal of image registration is to find corresponding anatomi-
cal locations in two images. Image registration concerns images from the same
subject acquired by different imaging modalities or at different time points as
well as images acquired from different subjects. To bring images into registration
it is usually necessary to estimate a geometric transformation which aligns the
images. This is typically achieved by minimization of a cost function which mea-
sures the degree of (mis-) alignment of the images as a function of the geometric
transformation. Most registration algorithms use a cost function based on image
intensity information to directly to measure the degree of (mis-)alignment of the
images. These methods are called voxel-based registration techniques and are
especially successful since they do not require any feature extraction or segmen-
tation of the images. Comprehensive reviews of image registration techniques
can be found in [26, 21, 47].

A key application of image registration is the alignment of images from the
same subject acquired at different time points. The difference between successive
time points can range from fractions of a second (e.g. in cardiac motion studies)
to several years (e.g. in longitudinal growth or atrophy studies). The comparison
of images across time points enables the quantification of the anatomical differ-
ences between time points. These differences can have a number of reasons. The
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difference can be caused by patient or organ motion, by growth or atrophy, or
by disease progression. In this paper we will concentrate on the application of
registration techniques for the quantification of brain growth as well as for the
quantification of cardiac motion.

2 Analysis of Brain Growth Using Non-rigid Registration

Image registration has been widely used for the quantification of changes in
the human brain using rigid [23, 22] and non-rigid serial registration [19, 36]. For
example, growth patterns have been mapped in 4-D (3-D plus time) in older chil-
dren [33, 40], and clinically useful information has been extracted in conditions
such as Alzheimer’s Disease [41, 18], and imaginative studies of neurogenetics
and development have been undertaken [42]. In many of these studies changes
over time are particularly important to answer the scientific questions.

The work in our own group has focused on the analysis of brain growth dur-
ing the first two years of life in children born prematurely. The first two years
constitute a period of significant growth in the developing brain. Preterm birth
can have substantial effects in that preterm infants can show neuropsychiatric
problems later in childhood [27, 44, 7]. This motivates the need for characterizing
structural brain development in the early years.

2.1 Deformation-Based Morphometry

In longitudinal studies images are acquired from the same subject at different
time points. To compare the brain structure of the same subject at different
times, the registration transformation between the baseline image and the follow-
up images of a subject must be computed. The first step of the registration is to
compute a global transformation which compensates for pose differences between
the images. Since we are interested in estimating local changes in brain volume
caused by growth we only want to correct for rigid pose differences. For the
rigid registration we are using a registration algorithm which maximizes the
normalized mutual information (NMI) [39] between the baseline image and a
follow-up image.

The second step of the registration is to compute a non-rigid transformation
which compensates for local deformations as the result of growth. We have pre-
viously developed a spline-based deformation model [37]. Using this approach,
the deformation can be represented as a free-form deformation (FFD) based on
B-splines which is a powerful tool for modeling 3D deformations and can be
written as the 3D tensor product of the familiar 1D cubic B-splines,

u(x) =
3∑

l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(w)ci+l,j+m,k+n (1)

where c denotes the control points which parameterize the transformation. The
optimal transformation is found by minimizing a cost function associated with
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the global transformation parameters as well as the local transformation param-
eters. The cost function comprises two competing goals: The first term repre-
sents the cost associated with the voxel-based similarity measure, in this case
normalized mutual information [39], while the second term corresponds to a reg-
ularization term which constrains the transformation to be smooth [37]. The
performance of this registration method is limited by the resolution of the con-
trol point mesh, which is linearly related to the computational complexity: more
global and intrinsically smooth deformations can only be modeled using a coarse
control point spacing, whereas more localized and intrinsically less smooth de-
formations require a finer spacing. An example of such a registration can be seen
in Figure 1.

(a) (b) (c)

Fig. 1. A brain MRI of a child at the age of (a) one year and (b) two years. (c) shows
the non-rigid deformation required to explain the growth between the two time points.

When two images are related to each other by a nonrigid transformation, the
target image is subjected to local deformation, which locally changes the volume
of regions in the coordinate space. The local volume change in an infinitesimally
small neighborhood around any given point is represented by the local Jacobian
determinant of the coordinate transformation at that point:

|J(x, y, z)| = det
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If there is no local volume change, the Jacobian determinant is 1. If there is
a local volume decrease, it is smaller than 1, and larger than 1 if there is a
local volume increase. Thus, local volume change (e.g. growth or atrophy) can
be directly estimated from the deformation field which aligns the baseline and
follow-up images [19].

In crosssectional studies a similar approach can be used to compare the brain
structure of subjects within a population with those of a reference subject. In
this case the registration transformation between the reference subject and all
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other subjects in the population must be computed. Again, a similar approach
based on global registration, followed by local registration is often used for this
purpose. By combining longitudinal and crosssectional registration the images
of all subjects can be mapped into a common coordinate system and we can
perform any morphometric analysis in this standardized coordinate system [38].

2.2 Deformation-Based Morphometry Applied to Brain Growth

The data used for this study consists of T1 weighted MR volumes of 22 preterm
born children who were all scanned at one and two years. Seven subjects’ images
were acquired using a Marconi 0.5 T Apollo scanner, TR/TE = 23ms/6ms, flip
angle = 30◦ with a voxel size of 1 × 1 × 1.6mm3. The remaining images were
acquired using a 1.0T HPQ system (Philips Medical Systems, Cleveland, Ohio),
TR/TE = 23ms/6ms, flip angle = 35◦ with a voxel size of 1 × 1 × 1.6mm3. To
analyze these datasets we combine longitudinal and crosssectional registration.
First, we compute for each subject the registration transformation between 1 and
2 years. In the next step we compute growth as local volume change, e.g. the
local Jacobian determinant of the non-rigid transformation. In the final step the
volume change maps are then mapped into average anatomical space of all the
subjects at the age of 2 years using an approach described in [1]. An overview of
this is shown in Figure 2 and an example of an average growth map calculated
by this method is shown in Figure 3. In this example the red color indicates
expansion and blue color shows contraction. It can be clearly seen that frontal
white matter show the highest levels of growth while the general increase in the
volume of brain tissue leads to a contraction of CSF space.

Fig. 2. Deformation-based morphometry for brain development using longitudinal and
crosssectional registration [1]
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Fig. 3. An average growth map showing areas of expansion (red color) and contraction
(blue color)

3 Analysis of Cardiac Motion Using Non-rigid
Registration

With the development of new imaging and surgical techniques, the care and
treatment of patients with cardiovascular diseases (CVDs) has steadily improved
over the last 50 years, but they are still the leading cause of death in the western
world [16]. Using magnetic resonance imaging (MRI) it is possible to obtain high
resolution cine-images of cardiac motion noninvasively enabling global functional
parameters such as left ventricular volume (LVV), left ventricular mass (LVM),
stroke volume (SV), ejection fraction (EF), and cardiac output (CO) to be mea-
sured once suitable pre-processing has been applied on the acquired images and
the left ventricle (LV) has been segmented out.

Although global functional parameters are useful indicators of cardiovascular
diseases they do not indicate which regions of the heart have reduced contrac-
tile function, and it is even possible that for some patients global functional
parameters fall within normal limits even though regional wall motion may be
abnormal [24, 31]. MRI combined with tissue tagging [46, 6, 5] is an important
imaging technique for the noninvasive measurement of three dimensional (3D)
motion and strain patterns within the walls of the heart. Radio-frequency (RF)
pulses applied at the start of the cardiac cycle produce planes of saturated mag-
netization in the muscle walls which appear as dark stripes when imaged imme-
diately afterwards, and can be tracked to reconstruct dense deformation fields
within the myocardium.

Since the introduction of tissue tagging by Zerhouni et al. [46] and Axel and
Dougherty [6, 5] in the late 1980’s, a tremendous amount of effort has been ex-
pended in developing methods for extracting deformation fields from tagged MR
images efficiently. Among these methods optical flow [20, 35, 15], active contour
models [4, 2, 3, 45, 28], and harmonic phase MRI (HARP) [29, 30, 32] have yielded
moderately successful results although none have proved to meet all requirements
in terms of accuracy and efficiency to come to dominate clinical practice. Among
the main difficulties encountered is the need to estimate through-plane motion:
As the tag pattern produced during image acquisition is two dimensional, mul-
tiple sets of short-axis (SA) and long-axis (LA) images are needed to estimate
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the 3D motion of the heart over time (see Figure 4). Another problem is pa-
tient and respiratory motion: The time required to acquire these images varies
between typically 40 mins to 1 hour and although breath-hold sequences are
used to minimize respiratory motion while scanning a single image plane, little
can be done to compensate for whole body motion. Finally, the intensity of the
tag pattern produced during scanning is time varying and the contrast between
the tags fades during the cycle. Tag fading complicates motion field estimation
as this must be taken account of. Although complementary spatial modulation
of magnetization (C-SPAMM) [17] reduces the effects of tag fading, the image
acquisition time is increased.

3.1 Motion Tracking by Image Registration

In recent years image registration techniques have also been successfully applied
to cardiac motion tracking [9, 11, 34, 43]. Image registration offers a number of
advantages over other cardiac motion tracking techniques. First, no assumptions
need to be made about the nature of the tag pattern and so image registration
based motion tracking is applicable to images with parallel tag patterns as well
as grid tag patterns. It also means that the configuration of imaging planes
chosen can be arbitrary (the tag planes in the long-axis direction do not need
to be aligned with the tag planes in the short-axis direction). Second, using
a statistical measure of image similarity (normalized mutual information) we
do not need to make any assumptions about the variation of intensity in the
sequence of images and so the effects of tag fading can be accounted for.

In our own group we have developed methods for cardiac motion tracking
based on the volumetric image registration algorithm of Rueckert et al [37] de-
scribed earlier. The deformation of the myocardium is estimated by registering
simultaneously sequences of SA and LA images taken during the cardiac cy-
cle to the corresponding sets of segmented images of the myocardium taken at
end-diastole. We have also investigated the use of cylindrical deformation mod-
els [10], statistical deformation models [13], and 4D B-spline models for cardiac
motion [12] tracking.

Our most recent work has focused on using subdivision lattices [25] for motion
tracking. Subdivision lattices are volumetric extensions of subdivision surfaces [8,
14] and are used to define a region of volume through recursive refinement of an
initial base lattice. They have the advantage that cells defining the lattices can
have an arbitrary topology and that it is possible to use a base lattice with a
relatively small number of control vertices to describe the volume of the LV.

Lattice Creation

To aid in the construction of the subdivision lattice representing the LV a graph-
ical user interface (GUI) tool has been created. To create the LV lattice a semi-
automatic procedure is used to first create surface models of the endocardium
and epicardium. A user places point markers delineating the endocardial surface
and a template surface is then registered to the point markers to define the en-
docardial surface. The epicardial surface is defined in the same manner. Once
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(a) Non-contiguous LA images

(b) Contiguous block of SA and LA Images

Fig. 4. Multiple sets of short-axis (SA) and long-axis (LA) images need to be acquired
to reconstruct the motion of the heart

the two surface models have been created the base polygon meshes defining the
endocardial and epicardial surfaces are connected vertex to vertex to define the
base lattice of the LV. In Figure 5 (e) 50 vertices are required to model the LV.
As can also be seen in the figure the boundary faces of the subdivision lattice
conform exactly with the endocardial and epicardial surfaces. This is because
the subdivision rules for lattices at the boundary faces are precisely those of the
subdivision rules for surfaces.

Motion Tracking

To reconstruct the deformation field within the myocardium sequences of SA
and LA images taken during the cardiac cycle are simultaneously registered to
corresponding sets of images of the myocardium taken at end-diastole. The esti-
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(a) Endocardial point markers (b) Endocardial template surface

(c) Endocardium (d) Endocardium and epicardium

(e) Model of the LV

Fig. 5. These figure shows how a subdivision lattice representing the LV is constructed:
(a) Using LA and SA views of the LV a user places point markers delineating the
endocardial border. (b) The approximate positions of the apex, base, and septum are
then specified by the user to align a template surface of the LV with the point set.
(c) The template surface is then registered to the point set to define the endocardial
surface. (d) Steps (a), (b), and (c) are repeated for the epicardial surface. (e) Finally,
the vertices of the base polygon meshes defining the endocardial and epicardial surfaces
are connected together to define the base lattice representing the LV (shown in thick
yellow lines). The edges of the cells of the subdivided LV lattice are shown in blue.
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mation of the motion field proceeds in a sequence of registration steps: Initially,
we register the SA and LA images taken at time t = 1 to the the SA and LA
images taken at time t = 0 (end-diastole). We do this by optimizing a cost func-
tion which is based on the sum of the normalized mutual information [39] of
the images being registered. The motion field for time frame 2 is obtained by
registering the images taken at time t = 2 to t = 0 using the transformation ob-
tained for t = 1 as an input. Similarly, the motion field for all other time frames
is obtained by registering the images taken at that time frame to the image at
time t = 0 using the transformation from the previous time frame as an input.
In our current implementation it is possible to register a single frame in about
2 minutes using a Pentium IV 3.2 GHz machine with 2 GB of memory.

4 Discussion and Conclusion

In this paper we have shown that non-rigid registration is a powerful tool for
estimating local deformations. These local deformations can be either the result
of a growth or disease process or a result of organ motion. In both case generic
non-rigid registration algorithms can be used successfully to quantify growth or
motion. It should be pointed out that non-rigid registration is very much an area
of on-going research and most algorithms are still in the stage of development
and evaluation. The lack of a generic gold standard for assessing and evaluating
the success of non-rigid registration algorithms is one of their most significant
drawbacks. In the absence of any such gold standard, it is necessary to compare
any non-rigid registration algorithm to other established techniques.
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Abstract. We consider the problem of estimating the local accuracy of
image registration when no ground truth data is available. The technique
is based on a statistical resampling technique called bootstrap. Only
the two input images are used, no other data are needed. The general
bootstrap uncertainty estimation framework described here is in principle
applicable to most of the existing pixel based registration techniques. In
practice, a large computing power is required. We present experimental
results for a block matching method on an ultrasound image sequence
for elastography with both known and unknown deformation field.

1 Introduction

Image registration algorithms [1,2,3,4,5,6] estimate a displacement field aligning
corresponding features in two given input images. The common feature of most
of these algorithms is that they provide a single-valued, deterministic answer.
For each point from one image, the algorithm calculates the coordinates of one
corresponding point from the other image. However, in practice, the estimate is
always known only with limited accuracy; there is always an uncertainty associ-
ated with it.

Here we shall consider the problem of estimating this uncertainty in the case
when no ground truth or a priori information is available, using only the two
input images. The bootstrap method [7,8,9] will permit us to use the same data
for estimation of both the deformation and the accuracy of this estimation.

1.1 Motivation

Knowing the accuracy of the registration result is always useful. The accuracy
information permits us to judge whether and to what extent can the registra-
tion be trusted. It can be also used to identify optimal registration parameters
and as a weighting factor for information fusion. It can also help us to deter-
mine the quality of the input data, so that we can discard or repeat unsuitable
experiments.

In many cases the displacement field is an input to subsequent analysis. We are
especially interested by the problem of elastography [10,11,12], specifically the
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estimation of the elastic properties of tissues from ultrasound sequences [13,14].
Knowing the uncertainty of the motion estimation will permit us to give more
weight to reliably estimated points for the inverse problem solution.

1.2 Previous Work

The precision of the estimated displacement has been studied experimentally
using ground truth data, for computer vision [15,16,17,18] as well as for medical
applications [19,20,21]. A ‘bronze standard’ [22] uses combined results of sev-
eral distinct registration algorithms as a reference. Statistical properties of the
estimation errors have been studied theoretically for rotations [23,24]. Heuristic
or Gaussian noise based uncertainty measures have been introduced for block
matching [25] and optical flow estimation [26,27]. Finally, for low-rank trans-
formations (such as rigid motion), the covariance can be estimated a posteriori
from a sufficiently high number of corresponding features [28].

1.3 Proposed Approach

We shall describe a general procedure applicable to a large class of image reg-
istration algorithms so that they provide not only the point (crisp) estimate of
the displacement field but also an estimate of the accuracy of this displacement.
In contrast to the prior work we shall neither require additional test or ground
truth data, nor restrict the allowed motion.

We consider images to be random processes and the input images as realiza-
tions of these random processes. If we had more acquisitions of the same scene
under identical conditions, we could regard them as independent realizations of
the random image processes. We could run our registration algorithm of choice
on each realization and the statistical distribution of the results would give us
an information about the accuracy of the registration.

Since we only have a single pair of images (one realization), we need to use
a trick called bootstrap resampling (Section 1.4). More specifically, we shall
randomly draw pixels from some neighborhood in the input images and treat
them as if they came from independent realizations of the image processes (see
Section 2.2 for more details). Then we can continue as above.

1.4 Bootstrap

Let us have N samples X = {x1, . . . , xN} of a random variable X. A boot-
strap [7,8,9] data set (resample) B

(·)
X =

{
y1, . . . , yN

}
is constructed by randomly

selecting N points from X, with replacement. Note that B
(·)
X is a multiset (also

known as a collection or a bag), which is unordered like a set but in which each
element can have a multiplicity greater than 1. The multiset B

(·)
X is constructed

from the same elements as X, but it contains some of them more than once, some
not at all. In bootstrap estimation, the resampling is repeated M times, yielding
M data sets B

(b)
X , which we shall treat as independent.
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Let ϑ be some statistic of the random variable X (such as its mean or variance).
We can calculate the estimate ϑ̂(X) of ϑ from the samples X. Now, we might be
interested in the distribution of ϑ̂, for example to check its accuracy or bias. To
do this, we calculate ϑ̂(b) = ϑ̂(B(b)

X ) for each bootstrap set B
(b)
X ; the distribution

pϑ̂ of ϑ̂ can then be approximated by an empirical bootstrap distribution p
(∗)
ϑ̂

,

constructed from the samples ϑ̂(1), . . . , ϑ̂(M).

2 Image Registration

We shall define the registration problem more precisely and show how the boot-
strap uncertainty estimation can be performed. We shall use a block matching
algorithm as an example.

2.1 Problem Formulation

Let us have two images f, g : R
m → R

n. Let Ω ∈ Z
m be a set of pixels from

the image f . We assume that the two images are related by a transformation
Tθ : R

m → R
m described by a parameter vector θ ∈ Θ ⊆ R

d. In other words, the
point of coordinates x in image f and the point of coordinates Tθ(x) in image
g correspond to the same physical point and as such are related by a statistical
dependence. We assemble the pairs of corresponding pixels into a set Sθ:

Sθ =
{(

f(x), g
(
Tθ(x)

))
; x ∈ Ω

}
and define a scalar similarity criterion J measuring the dependence between f(x)
and g

(
Tθ(x)

)
on Ω. This leads to the following estimate of the transformation

parameters θ:
θ̂ = argmin

θ∈Θ
J(Sθ) (1)

The only restriction with respect to the usual formulation is that J oper-
ates on a multiset. Most existing pixel based image registration methods [29],
[30,31,32,33,34] can be expressed in this form directly, whether the similarity
criterion is the sum of square differences, correlation coefficient, or mutual in-
formation. The feature space can be extended (so that the elements of S are
more than just pairs of pixel values) to accommodate methods that need infor-
mation from a small pixel neighborhood [35], such as the image gradient [36].
The optical flow [37] and fluid registration methods [38] can also be cast into
this framework.

2.2 Uncertainty Estimation

Following the general bootstrap strategy, we make M bootstrap data (multi)sets
Ω(b) by resampling Ω. For each Ω(b) we perform the minimization (1) yielding
an estimate

θ̂(b) = arg min
θ∈Θ

J(S(b)
θ ) with S

(b)
θ =

{(
f(x), g

(
Tθ(x)

))
; x ∈ Ω(b)

}
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The probability distribution pθ̂ of θ̂ can be approximated by an empirical
bootstrap distribution p

(∗)
θ̂

of the samples θ̂(1), . . . , θ̂(M). We need to assume the
validity of the bootstrap principle, i.e. that the distribution pSθ

of Sθ is well
approximated by the distribution p

(b)
Sθ

of the bootstrap samples S
(b)
θ , at least for

θ in the vicinity of the optimum. The bootstrap principle is valid if the pixel
values of f and g ◦ Tθ are independent and identically distributed (i.i.d) in Ω. It
is also valid if Ω can be partitioned into several sufficiently big classes such that
in each of the classes the pixel values are i.i.d.

Since we want to make the number of bootstrap data sets M reasonably
small to reduce the computational overhead, it is advisable to calculate only
some simple statistics on p

(∗)
θ̂

such as the bootstrap mean [9]

µ
(∗)
θ̂

=
1
M

M∑
b=1

θ̂(b)

and covariance matrix

Σ(∗)
θ̂

=
1

M − 1

M∑
b=1

(
θ̂(b) − µ

(∗)
θ̂

)(
θ̂(b) − µ

(∗)
θ̂

)T (2)

or alternatively the perhaps the more relevant expected square error

C(∗)
θ̂

=
1
M

M∑
b=1

(
θ̂(b) − θ̂

)(
θ̂(b) − θ̂

)T

Note that the convergence of the above estimates in particular requires smooth-
ness of θ̂ with respect to the input data, see [7] for details. The estimators can
also be biased.

2.3 Geometrical Error Estimation

A mean squared geometrical error can be defined as

ε2 = mean
x∈Ω

‖Tθ̂(x) − Ttrue(x)‖2

where Ttrue is the true transformation. Assuming that T
µ

(∗)
θ̂

approximates Ttrue

well, we can construct the bootstrap estimate for the expected value of ε2

E
[
ε2] ≈ e2 =

1
M − 1

M∑
b=1

1
‖Ω‖

∑
x∈Ω

‖Tθ̂(b)(x) − T
µ

(∗)
θ̂

(x)‖2 (3)

An estimate of the expected geometrical error of θ̂ is obtained by using θ̂ in-
stead of µ

(∗)
θ̂

. A geometrical error in a particular direction can be also easily
constructed.
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3 Block Matching

To illustrate the ideas from the preceding section, we shall apply them on the
well-known 2D block matching algorithm [18,39,40] in the context of motion
estimation from an ultrasound sequence for elastography [13,14]. The algorithm
itself is not our main interest here; we have deliberately chosen to make it very
simple, in order not to confuse the description and also to make the bootstrap
calculations reasonably fast.

We divide the scalar 2D image (n = 1, m = 2) into a set of possibly over-
lapping blocks Ωi. Here, for simplicity, we shall use rectangular blocks of size
wx × wy. The block centers zi will be placed on a uniform Cartesian grid. For
each Ωi, we independently estimate the motion parameters θi by minimizing
a standard sum of squared differences (SSD) criterion:

θ̂i = arg min
θ∈Θ

J(Si,θ)

with Si,θ =
{(

f(x), g
(
Ti,θ(x)

))
; x ∈ Ωi

}
and J(Si,θ) =

∑
(f ′,g′)

(
f ′ − g′

)2 for (f ′, g′) ∈ Si,θ

In each block, we shall search for a translation (d = 2)

Tθ(x) = x + θ (4)

This way, we shall have in each block Ωi information about the local translation.

3.1 Interpolation

The image g is interpolated using uniform cubic B-spline interpolation [41,42,43]
which provides continuous derivatives and good approximation properties. The
B-spline coefficients are calculated beforehand.

3.2 Minimization

We use a quasi-Newton type optimizer [44] — second–order information (Hessian
matrix H) is used to obtain quadratic convergence. We iteratively update the
estimate of H−1 using the BFGS strategy [44,45]. The minimum is only sought
within an a priori chosen interval of ‘reasonable’ values of θ.

In our application we know that the displacement at the top edge should
be zero, since the ultrasound probe is in contact with the tissue there. We go
through the image from top to bottom and from center to the left and to the
right [46], using the value of θ found in the block immediately above or next to
the current one as a starting guess.

3.3 Bootstrap Accuracy Estimation

For each block we evaluate the expected geometrical error e2 (3) which in the
translation case (4) simplifies to e2 = trΣ(∗)

θ̂
with the correlation estimator Σ(∗)

θ̂
defined by (2).
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4 Experiments

Experiments were performed on a sequence of ultrasound images acquired by
a standard Philips Envisor scanner for the elastography experiments. We have
used the Gammex 429 Ultrasound Biopsy Phantom1 that mimics normal tissue
and contains eleven test objects filled with low or high density gel, simulating
lesions. The movement between images of the sequence is caused by varying the
pressure applied on the ultrasound probe.

A key parameter for our bootstrap uncertainty estimation is the number of
bootstrap resampling M . According to the literature [7], to estimate simple
statistics such as correlation, M = 50 is often enough. Hence, we ran the fol-
lowing experiments with M = 10 and M = 100. Surprisingly, there was a little
difference between the results. All results presented here were calculated with
M = 10 which appears to be enough for the present application.

The algorithm was implemented in the Ocaml language2. Our experience
suggests that a reimplementation in an optimized C code might bring another
30 ∼ 50 % speed-up. The times reported are on a computer with a Pentium M
1400 MHz processor.

4.1 Synthetic Displacement Field

To have the ground truth information available, we have generated an artificial
displacement field (Figure 1) that attempts to be simple yet similar to displace-
ment fields encountered in real data. The right half of the images is undeformed,
to create an abrupt transition. In the left half the vertical displacement increases
linearly from top to bottom. The horizontal displacement increases linearly from
top to bottom and from right to left; in addition there is a low amplitude har-
monic component.

The block matching algorithm (Section 3) with bootstrap uncertainty estima-
tion was run on the original grayscale images (Figure 1, top) of size 541 × 426
pixels. We used overlapping blocks of 29×29 pixels whose centers lie on a uniform
grid with spacing of 5×5 pixels. In Figure 2 we show the recovered displacements
(to be compared with Figure 1, top), the estimated and the true geometrical er-
ror.

Note that even though the amplitude of the error has not been estimated ex-
actly, the results are in the right order of magnitude. Perhaps more importantly,
the algorithm has correctly identified the areas where errors are likely — around
the vertical edge where the motion is discontinuous and around the ‘lesion’ area
where texture is missing. The registration took about 3 hours.

4.2 Window Size

The bootstrap accuracy estimate permits us to optimize the parameters of
the registration itself, for example the window size. Figure 3 shows the de-
1 www.gamex.com
2 http://caml.inria.fr
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Fig. 1. The original image (top left) and its deformed version (top right). The hori-
zontal and vertical components of the artificial deformation (bottom left and bottom
right, respectively).

pendency of the real and estimated geometric error on the window size. Even
though the error estimation is not exact, it is nevertheless quite close to the
reality and it permits us to correctly identify the trade-off between a window
too small which provides a noisy estimate, and a window too big in which
the movement is not sufficiently homogeneous and cannot be explained by
a translation. One reason for the disparity is that the estimator incorrectly
assumes that the true transformation is a translation. The whole experiment
took 8 min.

4.3 Real Images

Finally, we have taken two images from the ultrasound sequence a few frames
apart and applied the registration algorithm on them (Figure 4) with the same
parameters as in Section 4.1. The recovered displacements seem to be realistic
and the uncertainty estimation correctly identified the problematic zone of the
‘lesion’ without texture. The calculation took also about 3 hours.



68 J. Kybic and D. Smutek

recovered x

−18

−16

−14

−12

−10

−8

−6

−4

−2

recovered y

−9

−8

−7

−6

−5

−4

−3

−2

−1

true total error

1

2

3

4

5

6

7

8

9

expected total error

1

2

3

4

5

6

7

8

9

Fig. 2. The estimated horizontal and vertical displacements (top left and top right,
respectively). The true geometrical error ε and its bootstrap estimate e (bottom left
and bottom right, respectively). All values are in pixels.
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Fig. 4. Two images from the ultrasound sequence (top left, in green and red chan-
nels) and the recovered horizontal and vertical displacement (bottom left an right,
respectively). The expected geometrical error e (top right).

5 Conclusions

We have described a bootstrap-based uncertainty estimation procedure that can
be applied to a wide class of pixel-based image registration algorithms. Unlike
any other registration algorithm known to us, it can estimate the registration
accuracy using only the input images, yet it does not limit the class of the
representable transformations, nor it assumes a specific noise or image inten-
sity distribution. We have shown experimentally that the uncertainty estimates
produced by the algorithm are reasonable.

Bootstrap algorithms can take full advantage of the abundant computing
power available today. Even though for the simple registration algorithm pre-
sented here the computational time was just about acceptable, in more complex
cases parallel processing might be advisable.

The algorithm presented here is only a proof of concept, there is a number of
ways how to extend it, some of which were already mentioned in the introduction.
Finally, note that the algorithm can only estimate the stochastic part of the error
inherent to the registration itself. Therefore, even though we would be happy to
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see our uncertainty estimation incorporated into as many registration algorithms
as possible, it is clear that there will always be a need for a careful experimental
end-to-end testing of the complete registration chain.
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G., eds.: Proceedings of IPMI, Lecture Notes in Computer Science. Number 3565,
Heidelberg, Germany, Springer Verlag (2005) 299–310



Image Registration Accuracy Estimation Without Ground Truth 71

15. Fang, J., Huang, T.S.: Some experiments on estimating the 3-D motion parameters
of a rigid body from two consecutive image frames. IEEE Trans. Pattern Anal.
Mach. Intell. 3(65) (1984)

16. Snyder, M.A.: The precision of 3-D parameters in correspondence based techniques:
the case of uniform translational motion in rigid environment. IEEE Trans. Pattern
Anal. Mach. Intell. 5(11) (1998) 523–528

17. Haralick, R.M., Joo, H., Lee, C.N., Zhuang, X., Vaidya, V.G., Kim, M.B.: Pose
estimation from corresponding point data. IEEE Trans. Systems, Man and Cyber-
netics 6(19) (1989) 1426–1446

18. Davis, C.Q., Freeman, D.M.: Statistics of subpixel registration algorithms based
on spatiotemporal gradients or block matching. Optical Engineering 4(37) (1998)
1290–1298

19. Maurer, C.J., Fitzpatrick, J., Wang, M., Galloway, R.J., Maciunas, R., Allen, G.:
Registration of head volume images using implantable fiducial markers. IEEE
Transactions on Medical Imaging 16(4) (1997)

20. West, J., Fitzpatrick, J.M., Wang, M.Y., Dawant, B.M., Maurer, C.R.J., Kessler,
R.M., Maciunas, R.J., Barillot, C., Lemoine, D., Collignon, A., Maes, F., Suetens,
P., Vandermeulen, D., van den Elsen, P.A., Napel, S., Sumanaweera, T.S., Hark-
ness, B., Hemler, P.F., Hill, D.L.G., Hawkes, D.J., Studholme, C., Maintz, J.B.A.,
Viergever, M.A., Malandain, G., Pennec, X., Noz, M.E., Maguire, G.Q.J., Pollack,
M., Pelizzari, C.A., Robb, R.A., Hanson, D., Woods, R.P.: Comparison and eval-
uation of retrospective intermodality brain image registration techniques. Journal
of Computer Assisted Tomography 21(4) (1997) 554–568

21. Jannin, P., Fitzpatrick, J., Hawkes, D., Pennec, X., Shahidi, R., Vannier, M.: Val-
idation of medical image processing in image-guided therapy. IEEE Trans. on
Medical Imaging 21(12) (2002) 1445–1449

22. Nicolau, S., Pennec, X., Soler, L., Ayache, N.: Evaluation of a new 3D/2D regis-
tration criterion for liver radio-frequencies guided by augmented reality. In: Intl.
Symp. on Surgery Sim. and Soft Tissue Model. (2003) 270–283

23. Kanatani, K.: Geometric computation for machine vision. Oxford University Press,
Inc., New York, NY, USA (1993)

24. Kanatani, K.: Analysis of 3-d rotation fitting. IEEE Trans. Pattern Anal. Mach.
Intell. 16(5) (1994) 543–549

25. Anandan, P.: A computational framework and an algorithm for the measurement
of visual motion. International Journal of Computer Vision 2(3) (1989) 283–310

26. Heeger, D.J.: ”optical flow using spatiotemporal filters”. International Journal of
Computer Vision 1(4) (1988) 279–302

27. Simoncelli, E.P., Adelson, E.H., Heeger, D.J.: Probability distributions of optical
flow. In: Proc Conf on Computer Vision and Pattern Recognition, Mauii, Hawaii,
IEEE Computer Society (1991) 310–315

28. Pennec, X., Thirion, J.P.: A framework for uncertainty and validation of 3d reg-
istration methods based on points and frames. International Journal of Computer
Vision 25(3) (1997) 203–229

29. Kybic, J., Unser, M.: Fast parametric elastic image registration. IEEE Transactions
on Image Processing 12(11) (2003) 1427–1442
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Abstract. Nonlinear image registration is a prerequisite for various
medical image analysis applications. Many data acquisition protocols
suffer from problems due to breathing motion which has to be taken into
account for further analysis. Intensity based nonlinear registration is of-
ten used to align differing images, however this requires a large compu-
tational effort, is sensitive to intensity variations and has problems with
matching small structures. In this work a feature-based image registra-
tion method is proposed that combines runtime efficiency with good reg-
istration accuracy by making use of a fully automatic feature matching
and registration approach. The algorithm stages are 3D corner detection,
calculation of local (SIFT ) and global (Shape Context) 3D descriptors,
robust feature matching and calculation of a dense displacement field.
An evaluation of the algorithm on seven synthetic and four clinical data
sets is presented. The quantitative and qualitative evaluations show lower
runtime and superior results when compared to the Demons algorithm.

1 Introduction

Many medical image analysis applications require a nonlinear (deformable) reg-
istration of data sets acquired at different points in time. Especially when dealing
with soft tissue organs, like lung or liver during breathing, there are almost al-
ways motion differences that have to be compensated for further analysis. The
contributions in this paper focus on thoracic CT images coming from CT angio-
graphy (CTA) studies for clinical diagnosis of pulmonary embolism [1]. Nonlinear
registration is necessary to guarantee that the same anatomical regions are sub-
tracted from each other since patients in bad condition often have problems
holding their breath. Despite the focus on thoracic CTA studies the developed
algorithm is in principle suitable for other applications as well.

The registration literature distinguishes intensity- and feature-based nonlin-
ear registration methods. Surveys on nonlinear registration methods in medical
imaging can be found in Maintz and Viergever [2] or Zitova and Flusser [3]. Often
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Fig. 1. Evaluation data set F with axial slices in top and sagittal slices in bottom row.
a) and c) show the differences in inspiration and exspiration. b) gives the difference
image after Demons registration. Note the misregistered vessel structures.

feature-based methods are more accurate than intensity-based methods as long
as the feature extraction or segmentation steps are reliable and accurate. Due to
the reduction of the problem space, feature-based methods are also significantly
faster to compute. On the other hand, segmentation of the organs of interest is
not always an easy task and inaccuracies in the segmentation or feature extrac-
tion process have severe effects on a subsequent registration step, making the
intensity based methods perform better in many practical applications.

This paper presents a novel nonlinear registration approach based on auto-
matically extracted and matched feature points. Although intensity-based ap-
proaches are getting more attention by the research community, they face two
kinds of practical problems when applied to large thoracic data sets. First, due
to their mathematical complexity they require large computational effort. Sec-
ond, those approaches that are computationally feasible often tend to misregister
small structures in the lung like vessels and airways. Further, intensity variations
that occur when comparing inhaled and exhaled lungs are not modeled due to
implicit brightness constancy assumptions. Fig. 1 shows a nonlinear registration
example on lung CT data where the widely-used Demons algorithm [4] leads
to misregistrations of vessel structures. Starting from this problem, an auto-
matic feature matching and registration pipeline was established using state of
the art techniques from the computer vision community. This pipeline contains
Foerstner corner detection [5], forward-backward matching using a 3D scale in-
variant feature transform (SIFT) descriptor [6] and a global descriptor similar
to shape context [7] and dense displacement field estimation in the thin-plate
spline (TPS) framework [8]. Especially SIFT and shape context have proved
to be very powerful approaches in traditional computer vision applications like
wide-baseline matching or object recognition. The main contributions of this
work are the 3D extension and the runtime optimization of these stages and
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their application to medical images. Related work on feature-based registration
was presented in Rohr [9] showing an approximating thin-plate spline regis-
tration using manually defined landmarks. In Johnson and Christensen [10] a
combined landmark and intensity based approach that establishes a consistent
deformation field was proposed. Chui et al. [11] have shown a unified nonlinear
feature registration approach using a joint clustering and matching framework.
Note that none of these works addresses the problem of fully automatic feature
extraction, matching and registration.

2 Methods

Breathing motion mainly stems from two sources, the diaphragm and the rib
cage muscles. Expected tissue deformations are not extremely large even in the
case of matching full exhalation to full inhalation and they change smoothly over
the image domain. These considerations imply that a robust and reproducible
feature extraction step producing large numbers of feature candidates followed
by the automatic matching of feature descriptors is a valid approach to find cor-
responding structures in the images (see Fig. 2 for the matching and registration
pipeline). Due to the large similarity of local neighborhoods in lung images it
is important to not only look at local feature descriptors but also add a notion
of global correspondence. Mortensen et al. [12] have recently proposed a com-
bined local and global descriptor for the matching of repetitive patterns. Their
ideas were adapted to solve the ambiguities with locally similar structures. After
establishing sparse corresponding features a dense displacement field has to be
calculated. Bookstein [8] motivated the thin-plate spline (TPS) framework as the
appropriate way of displacement field interpolation. However, the interpolating
behavior of TPS is not desirable since it may lead to foldings. To overcome this
problem the decision to use TPS approximation [9] was made.

The large size of current routinely acquired CT volume data poses runtime
and memory restrictions on practically useful algorithms. Acquired CT data

Fig. 2. Nonlinear matching and registration pipeline. The feature extraction stage
only shows extracted bone corners, while the method also extracts lung and tissue
features.
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sets easily require hundreds of MB in memory, so it is necessary to consider
computational and memory effort when designing algorithms. In the presented
pipeline two performance bottlenecks were identified due to the large number
of detected feature points. First, the calculation of the shape context descriptor
is critical due to its internally used log-polar histogram bin structure. There-
fore an approximation using axis-aligned histogram bins was developed. Second,
the calculation of the final dense displacement field is very expensive when con-
fronted with a large number of matched points. Consequently, the global TPS
transform was replaced with a k-d tree based locally restricted TPS (LRTPS).
The following subsections describe the different pipeline stages in more detail.

2.1 Feature Extraction

The first step in the nonlinear registration pipeline is fast and reproducible fea-
ture extraction. This was already extensively investigated by Rohr [9]. His eval-
uations of several different 3D anatomical feature detection operators resulted
in the recommendation of the structure tensor based 3D Foerstner operator [5].

2.2 Local SIFT Feature Descriptor

For each detected feature a distinctive local SIFT feature descriptor [6] is built.
SIFT descriptors are robust to local deformations and to errors in feature detec-
tion. Performance evaluations show its excellent matching behavior on various
kinds of transformations [13]. In this work only the SIFT descriptor representa-
tion is used, since keypoint localization is performed using Foerstner corners. To
apply the SIFT descriptor representation on volume data an extension to 3D is
necessary. The 3D SIFT descriptor quantizes gradient locations in a 2x2x2 grid
while gradient orientations are quantized into two 8-bin orientation histograms.
Each 512-dimensional descriptor is normalized by its L2-norm. In contrast to the
2D SIFT formulation, the proposed 3D SIFT descriptor is not rotation-invariant,
since this saves computation time and breathing motion is assumed not to lead
to strong rotation-like local deformations.

2.3 Global Shape Context Feature Descriptor

The 3D shape context descriptor [7] assumes that objects are captured by point
sets P = {p1, ..., pn} obtained from a feature detector or as locations of edges
from an edge detector. If one looks at the set of vectors emitted from one point
pk to all other points pi of a shape with i �= k, this set can be interpreted as a
rich description of the shape configuration relative to pi. The relative distribution
of this set of vectors is used as a compact, yet highly discriminative histogram
descriptor. This histogram uses bins that are uniform in a 3D spherical coordi-
nate system (θ,φ,r). The r coordinate axis is logarithmically scaled, so positions
of nearby sample points have stronger influence on the descriptor. The log-polar
histogram binning of this method was identified as a performance problem when
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Fig. 3. Approximated global context (a) vs shape context (b) histogram bin structure

applied to a large number of extracted feature points. Therefore an approxima-
tion of the shape context descriptor was used, which offers good matching results
compared to the classical approach. Here the log-polar histogram bin structure is
replaced with a bin structure based on rectangular, axis-aligned image patches.
Fig. 3 compares the equivalent 2D histogram bin structures of the classical and
the approximated descriptors. The patch size increases exponentially with grow-
ing distance from the feature point. This strategy preserves local information
close to the feature point and generalizes at larger distance to a coarser quan-
tization. If one uses a 3D integral image representation to store feature point
locations, this descriptor is extremely efficient to compute due to its axis-aligned
bin structure. The integral image allows to count feature points per rectangular
patch in constant time, so for each feature point the histogram is calculated in
logarithmic instead of linear time.

2.4 Robust Feature Matching

To find corresponding feature points a matching algorithm has to be used. The
previous stages have established a local and a global descriptor for each feature
point, the task of the matching stage now is to find those point pairs from two
volumes that minimize a cost function derived from the descriptors. Forward-
backward matching, a simple but robust approach in terms of consistency, oc-
clusions and erroneous feature extraction, was presented by Fua [14] on stereo
matching problems. The basic idea is to perform the matching step twice by
reversing the roles of the two volumes V1, V2 and considering only those matches
as valid for which the corresponding points Pi,1 and Pi,2 are identical when
matching from V1 to V2 and from V2 to V1. The cost function used in the two
matching steps is a weighted linear combination of distance metrics. The dis-
tance metric dSIFT for the SIFT feature descriptor is the Euclidean distance in
the 512-dimensional feature space. Shape context descriptors SCi and SCj are
compared using a χ2 statistic dSC = χ2 = 1

2

∑
k

(SCi,k−SCj,k)2

SCi,k+SCj,k
. Both distance

metrics are normalized between 0 and 1. The total cost function is given by
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d = ωdSIFT + (1 − ω)dSC where ω is a weighting factor. Matches with a cost
function value above some user-defined threshold Td are discarded.

2.5 Dense Displacement Field Interpolation

The final step in the registration pipeline is the estimation of a dense displace-
ment field from the sparse matching result. For this purpose a TPS interpolation
is used [8,9]. In its original formulation the interpolating behavior of the TPS
often is too restrictive and might lead to overfitting to the correspondences or
folding of the displacement field in case of erroneous correspondences. In this
work the findings of Rohr [9] for approximating TPS mappings were considered.
A regularization term is added to the formulation, which is steered by a pa-
rameter λ, weighting the tradeoff between interpolation and smoothness of the
solution. Further, a landmark error term is introduced to give each pair of cor-
responding features an uncertainty measure, which is directly derived from the
matching costs of the feature matching stage.

It is desirable that the matching stage produces a large number of feature cor-
respondences nmatch. On typical volume data sets thousands of correspondences
might be achieved. In this case the warping of large volume data sets is very
costly, since for each voxel a multiplication with O(nmatch) weighted landmarks
including the calculation of O(nmatch) vector norms is involved. Therefore a lo-
cally restricted version (LRTPS) of the normally global TPS transform is used.
The source points of the feature correspondences are put into a k-d tree struc-
ture to give efficient access to its neighbor features. For each feature point a TPS
transform restricted to a pre-defined number of neighbors is calculated. So only
a subset of the total set of correspondences in the volume is taken for locally
estimating the transform. The dense displacement field approximation step al-
ways looks for the nearest feature correspondence in the k-d tree and takes the
stored local TPS transform to compute a displacement.

3 Experiments and Results

To assess the validity of the feature-based registration approach qualitative and
quantitative evaluations were performed on synthetically transformed and clini-
cal thorax CT data sets. For the synthetic deformation experiments two differ-
ent kinds of deformations were used. The first deformation model is a Simulated
Breathing Transformation simulating rib-cage and diaphragm muscle behavior.
The second synthetic transformation makes use of evenly distributed landmarks
that are moved in random directions. The synthetic experiments give numbers
on the RMS of the intensity differences before and after registration, compares
the registered and the synthetic displacement fields and compares the method
with the Demons algorithm. Real data experiments show the decrease in the
RMS of the intensity differences, compare the RMS with the Demons algorithm
and give qualitative difference images. All experiments were performed on a dual
2GHz AMD Opteron system with 8GB RAM running Linux.
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3.1 Synthetic Deformation Experiments

Synthetic experiments were performed on seven test data sets (A,B,C,D,E,F,G)
taken at inspiration, each of them having a volume size of 512 by 512 by 256
voxels. The first synthetic transformation intends to model breathing behavior.
The nonlinear transformation d(x, y, z) : R3 → R3 simulates diaphragm and
rib cage movement. Diaphragm movement is applied as a translational force in
the data sets negative z direction. Nonlinearity is introduced by weighting the
constant vertical translation tvertical with a two-dimensional Gaussian distribu-
tion that depends on the x and y coordinates of the data set. Mathematically a
displacement vector d1 = (0, 0, z′)T is applied to each point (x, y, z)T that maps
it to (x, y, z′)T with

z′ = z − tverticale
− (x−µx)2+(y−µy)2

2σ2

where (µx, µy) is the center of gravity of the diaphragm points and σ is chosen
such that points lying at the exterior of the diaphragm surface nearly remain
fixed. In a similar fashion, simulation of rib cage behavior during breathing
leads to a radial, center-directed translation tinplane. It is used to form a second
displacement d2 = (x′, y′, 0)T that maps points (x, y, z)T to (x′, y′, z)T with

(
x′

y′

)
=
(

µx

µy

)
+
(∣∣∣∣(x−µx

y−µy

)∣∣∣∣−tinplane ∗ (1−e−
(x−µx)2+(y−µy)2

2σ2 )
)

∗

(
x−µx

y−µy

)
∣∣∣∣(x−µx

y−µy

)∣∣∣∣
Combining displacements d1 and d2 results in transformation d. Finally, to
simulate a change in lung gray-values due to inhalation, all gray values smaller
than -800 Hounsfield Units (HU) are increased by a random number drawn from
a normal distribution centered at 25 HU with a standard deviation of 3 HU.

The seven test data sets were synthetically transformed with a small and a
large deformation. The small deformation is defined by the translations tvertical =
25mm and tinplane = 10mm while the large deformation is defined by tvertical =
55mm and tinplane = 25mm. Fig. 4 a)-c) shows the effects of these deforma-
tions on data set A. First, the feature matching produces corresponding points
which can be compared to the ground truth simulated breathing transforma-
tion in terms of the RMS of the displacement difference vectors (RMSdisp) and
the maximum of the lengths of the displacement difference vectors (MAXdisp)
over all correspondences. Evaluations showed that the RMSdisp varies between
0.265mm and 0.314mm for the small and between 0.558mm and 2.479mm for
the large deformation over the data sets. Accordingly MAXDISP varies between
2.62mm and 8.59mm for small and between 14.95mm and 28.37mm for large de-
formations respectively.

Table 1 gives the results of the synthetic registration experiments. All com-
parisons are always performed only on those regions which are present in both
registered data sets. The RMS of the intensity differences before (RMSDinitial)
and after (RMSDfeature) registration are calculated, as well as the difference of
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Fig. 4. Synthetic transformations. a) original data set A, b) the small and c) the
large simulated breathing deformation. d) original data set B, e) randomly displaced
landmark transformation -8...+8, f) displacement -24...+24, g) displacement -48...+48.

Table 1. Simulated breathing transformation. Registration results in terms of RMS
intensity differences and displacement difference vectors.

Measure A B C D E F G Mean
RMSDinitial [HU] 385.99 327.25 303.92 359.49 318.73 316.58 316.45 332.63
RMSDdemons [HU] 114.44 115.56 92.05 100.06 96.33 90.21 105.95 102.08
RMSDfeature [HU] 45.18 45.71 43.43 50.78 46.09 41.64 47.91 45.82
RMSdisp,demons [mm] 4.564 5.961 5.412 4.842 4.756 4.931 5.741 5.172
RMSdisp,feature [mm] 0.662 0.769 0.59 0.66 0.601 1.338 1.025 0.806
MAXdisp,demons [mm] 34.55 38.56 38.06 29.95 28.45 35.26 37.59 34.63
MAXdisp,feature [mm] 8.59 9.56 8.02 8.52 8.87 12.64 11.79 9.71

S
im

B
re

at
h

25
-1

0

# matches 2678 2121 2330 2022 1805 5204 3714 2825.9
RMSDinitial [HU] 549.02 477.81 446.84 521.65 477.07 472.65 442.95 484
RMSDdemons [HU] 134.46 135.69 128.57 181.32 145.77 153.67 153.11 147.51
RMSDfeature [HU] 69.35 82.24 71.09 96.98 70.11 74.78 78.93 77.64
RMSdisp,demons [mm] 6.844 7.384 6.912 5.822 5.113 7.012 6.992 6.583
RMSdisp,feature [mm] 1.059 1.382 1.327 1.331 1.252 2.256 2.03 1.519
MAXdisp,demons [mm] 39.45 38.12 39.99 41.72 38.09 43.01 42.95 40.48
MAXdisp,feature [mm] 15.22 21.44 19.84 23.49 18.24 24.14 21.66 20.58

S
im

B
re

at
h

55
-2

5

# matches 1940 1424 1709 1287 1277 2778 2856 1895.9

Table 2. Synthetic TPS transformation results. Registration results in terms of RMS
intensity differences and displacement difference vectors.

Measure -8...+8 -16...+16 -24...+24 -32...+32 -48...+48
RMSDinitial [HU] 164.89 233.48 289.76 333.94 397.89
RMSDdemons [HU] 161.13 188.67 193.75 184.12 253.81
RMSDfeature [HU] 90.58 169.89 236.83 271.113 360.72
RMSdisp,demons [mm] 5.834 9.374 13.874 17.099 19.933
RMSdisp,feature [mm] 4.802 8.355 11.172 15.792 18.562
# matches 1729 1101 426 312 87
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the resulting and the synthetic displacement fields in terms of the RMS of the
displacement vector field RMSdisp and the maximum of the lengths of the dis-
placement difference vectors MAXdisp. The algorithms performance is compared
to the widely used Demons [4] algorithm. Its implementation was taken from the
Insight Segmentation and Registration Toolkit 1. The Demons algorithm uses
a five level multi-resolution framework to calculate a smooth displacement field
with a fixed number of iterations per multi-resolution level (between 100 and 15
from coarse to fine) in a gradient-descent scheme. Fig. 5 a)-c) shows difference
images of data set D which had the worst behavior in terms of decreasing the
RMS of the intensity differences using the large simulated breathing deformation.

The second synthetic transformation is calculated using a number of evenly
distributed landmark points and randomly assigning displacements to these land-
marks. The amount of the displacement is increased up to the sampling size of
the landmark distribution. These displacements are not physically motivated
and the larger the assigned displacements are the harder it is to correct them.
The dense synthetic displacement field is calculated using a TPS interpolation.
Note that we use TPS interpolation here not TPS approximation. For data sets
size 512x512x256 every 64 voxels a landmark is placed in the original image. This
leads to a grid of 7x7x3 landmarks. Now a random displacement is calculated
for each landmark coordinate in the range from -8 to +8 voxels. This is repeated
five times while always doubling the displacement range. Evaluations are solely
performed on data set B, Fig. 4 d)-g) shows the effect of these synthetic displace-
ments. The main motivation of these experiments is to determine the degree of
deformation where the algorithms are not capable to register the data anymore.
Table 2 gives the results of these experiments.

3.2 Clinical Data

The algorithm was also evaluated on four clinical thoracic data sets consisting
of two scans at different breathing states. The data sets show different problem
characteristics. Data sets B and G differ by a small breathing deformation and
intensity variations due to contrast agent application. Data set G additionally
shows a lung disease in the upper lobe region. Data sets E and F differ by large
breathing deformations and the images have intensity differences due to a lung
disease making them very hard to register. For the clinical data no gold stan-
dard displacement was available for comparison, therefore solely the decrease in
the RMS of the intensity differences before and after registration are calculated.
Again the novel feature-based algorithm is compared with the Demons algorithm.
The RMS of data set B was decreased from 201.57HU to 129HU (Demons) and
to 104.83HU (feature-based). Data set E decreased from 403.49HU to 235.88HU
and to 197.45HU, data set F from 413.62HU to 288.31HU and to 294.98HU and
finally data set G from 367.66HU to 274.14HU and to 241.43HU. The num-
bers of found correspondences lies between 685 and 1632. For qualitative results
difference images are shown in Fig. 5 d)-f) for data set B and g)-i) for data set E.

1 http://www.itk.org
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Fig. 5. Selected Results. Top row always axial, bottom row always sagittal slices. Left
image shows difference image before, middle image after Demons and right image after
feature-based registration. a)-c) shows synthetic results of data set D with a simulated
breathing transformation of tvertical = 55mm and tinplane = 25mm. d)-f) shows results
on real data set B, g)-i) on real data set E.
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4 Discussion and Outlook

The different stages of the proposed feature-based algorithm require some para-
meters to be chosen. In the matching stage normalized local and global descrip-
tors are used to form the matching cost function. A meaningful threshold Td

has to be found to exclude bad matches which was empirically chosen between
0.25 and 0.35. The matching stage also produces some outliers. The MAXdisp

measures reflect this fact, especially in the matching evaluation. However, the
registration stage with the approximating TPS framework takes the magnitude
of the matching cost into account, such that outlier matches have a low influence
on the final dense displacement field. Parameter λ of the TPS displacement field
approximation was selected as λ = 0.005 after experimenting with several data
sets. The LRTPS implementation needs a choice on the number of neighboring
points that defines a local TPS, this parameter was set to 150.

The two goals of the proposed algorithm, to be faster and at least as accurate
as a state-of-the-art nonlinear intensity-based registration algorithm, were both
met. Computation time of the feature-based algorithm on the 512x512x256 data
sets ranges between 1632s and 2282s, depending on the number of identified
correspondences. The largest part (more than 50%) of the algorithm runtime still
goes into the calculation of the dense displacement field. The Demons algorithm
takes on average around 2540s for registration of two 512x512x256 data sets. If
one further increases data sets size a feature-based algorithm will be even more
efficient due to its inherent reduction of matching complexity.

Registration accuracy of the feature-based algorithm exceeds the Demons al-
gorithm in most of the synthetic examples. Demons only performs better on
the evenly distributed landmark TPS experiments with a high degree of ran-
dom deformation where the feature-based approach is not able to find enough
correspondences. However, these deformations are physically implausible and
not representative. Especially the simulated breathing transformation was very
accurately registered using the feature-based approach. This is reflected in the
substantial decrease of the RMS of the intensity difference and the RMS of the
displacement difference vector fields (in the order of 0.5mm to 2.0mm). The
difference images of the simulated breathing experiment (Fig. 5) illustrate the
problems of the Demons approach with the vascular structures. The real data
experiments show that the performance of the feature-based algorithm is com-
parable to Demons. Performance on data sets B and G was better, while the
performance on the very difficult data sets E and F is similar. Although Demons
shows lower RMS values, the difference images of the feature-based approach
have the same quality. However, the feature-based approach also has some prob-
lems with registration of vessel structures on the difficult data sets. The largest
disadvantage of the feature-based approach is to get a large number of robust,
evenly distributed feature matches. This can not be guaranteed in the current
implementation, which explains the registration problems and can also lead to
artifacts at the edges of the local TPS regions.

Future work will investigate methods to further speed-up the algorithm in its
time-consuming stages. Another important point is to find a way to guarantee
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a good distribution of matching features. For evaluation a comparison with a
more elaborate intensity-based registration approach will be performed. The
fusion of this algorithm with a suitable intensity-based method seems to be a
very promising direction, since the fast feature-based matching should provide
a very good initial condition.
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Abstract. Here we present a new image registration algorithm for the
alignment of histological sections that combines the ideas of B-spline
based elastic registration and consistent image registration, to allow si-
multaneous registration of images in two directions (direct and inverse).
In principle, deformations based on B-splines are not invertible. The con-
sistency term overcomes this limitation and allows registration of two
images in a completely symmetric way. This extension of the elastic reg-
istration method simplifies the search for the optimum deformation and
allows registering with no information about landmarks or deformation
regularization. This approach can also be used as the first step to solve
the problem of group-wise registration. . . .

1 Introduction

Studying the three-dimensional organization of complex histological structures
requires imaging, analyzing and registering large sets of images taken from seri-
ally sectioned tissue blocks. We have developed an integrated microscopy system
that automates or greatly reduces the amount of interaction required for these
tasks [1,2] and provides volumetric renderings of the structures in the tissue.

R.R. Beichel and M. Sonka (Eds.): CVAMIA 2006, LNCS 4241, pp. 85–95, 2006.
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Proper section alignment is the first step towards an accurate 3D tissue re-
construction, as it is in other imaging modalities [3,4]. In our case we perform
a coarse alignment of the sections using an automatic rigid-body registration
method [5]. This method can not correct some non-linear distorting effects (e.g.
tissue folding, stretching, tearing, etc.) caused by the manual sectioning process.
Moreover, the distance between sections causes significant differences between
the same structures of interest in consecutive sections, which could be misinter-
preted by a complete linear registration process. Therefore, a non-linear or local
method is strongly needed in order to refine the first registration step.

In this paper we present a new method for elastic and consistent registration
of histological sections. All the examples described in the paper used mammary
gland tissue samples; however, the same algorithm could be equally applied to
other tissue sources and image modalities.

2 Methodology

The properties of B-splines have been largely proved to be very useful when
modeling deformations in many biomedical imaging problems; such as tracking
the movement of the left ventricle from MRI images [6], reconstructing the 3-D
motion of the cardiac cycle [7] or modeling the motion of the breast by dynamic
MR imaging [8].

The registration of a source image with a target image can be defined as the
problem of finding a deformation field that transforms coordinates of the target
image into coordinates of the source image. The main problem of using B-spline
deformation fields is that the estimated field might not be invertible (which is
not a problem since depending on the specific case, the true deformation field
may not be invertible neither). However, in case it were invertible, the inverse
deformation field can be computationally expensive. Either it is invertible or
not, it is convenient to have also a way of transforming coordinates in the source
image into coordinates of the target. This would define a second deformation
field that is close to the inverse of the original field and it has proven to be
useful as a way of regularizing the registration problem [9,10]. This two-way
registration is known as consistent registration. [10] achieves the consistency by
forcing the deformation field to be a diffeomorphism (continuous, differentiable,
and invertible, its inverse must also be continuous and differentiable). This is
a too strong constraint for our images, although it has the advantage of not
having to compute two separate fields since the diffeomorphism condition au-
tomatically guarantees the existence of the deformation inverse. [9] computes
two independent deformations whose composition should be as close as possible
to the identity transformation. Thus, one is not the inverse of the other. This
closeness to identity is explicitly introduced into the objective function.

In this work we combine the idea of elastic registration using vector-spline reg-
ularization [11] with that of a consistent registration [9]. We combine both ideas
and extend them in order to overcome their limitations. The standard registra-
tion method presented in [11] propose the calculation of the elastic deformation
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field trough the minimization of an energy functional composed by three terms:
the energy of the similarity error between both images (represented by the pix-
elwise mean-square distance), the error of the mapping of soft landmarks, and a
regularization term based on the divergence and the curl of the deformation to
ensure its smoothness. This minimization is optimized by a variant of the robust
Levenberg-Marquardt method.

We transform the energy functional presented in [11] into a new functional
that incorporates a factor of the deformation field consistency. Unlike in [11], we
are now looking for two transformations at the same time (direct and inverse).
Therefore, the vectors passed to the Levenberg-Marquardt optimizer are now
twice as long. Besides the measurement of dissimilarity between the source and
target images (now in both directions) Eimg, the optional landmark constraint
Eµ and the regularization term (Ediv + Erot), we add a new energy term Econs
that expresses the geometrical consistency between the elastic deformation in
one direction (from source to target) and the other direction (from target to
source). Therefore, the energy function is now given by

E = wiEimg + wµEµ + (wdEdiv + wrErot) + wcEcons . (1)

Where wx are the specific weights given to the different energy terms.

2.1 Consistency Term

The consistency energy represents the geometrical distances between the pixel
coordinates after applying both transformations (direct-inverse or inverse-
direct), i.e. the amount by which the composed transformation differs from
identity. The standard approach [11] for this type of registration is to find a
deformation function

g+(x) : R
2 → R

2 . (2)

This function transforms the source image Is into an image as similar as possible
to the target image Is. This transformation g+ maps coordinates in Is into
coordinates in It. Here, following [9], we will also simultaneously look for its
corresponding inverse function

g−(x) : R
2 → R

2 . (3)

This function maps the coordinates in It into coordinates in Is.
Following this notation, our consistency energy term is given by

Econs = E+
cons + E−

cons

=
∫
x∈R2

‖x − g−(g+(x))‖2 dx +
∫
x∈R2

‖x − g+(g−(x))‖2dx . (4)

If we approximate the integrals by discrete sums and restrict the integration
domain, we obtain

E+
cons =

1
#Ω+

∑
x∈Ω+

‖x − g−(g+(x))‖2 . (5)
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E−
cons =

1
#Ω−

∑
x∈Ω−

‖x − g+(g−(x))‖2 . (6)

Where , Ω+, Ω− define sets of relevant pixels common to the target and source
images:

Ω+ =
{
x ∈ Ωs ∩ Z

2 : g+(x) ∈ Ωt ∩ Z
2} . (7)

Ω− =
{
x ∈ Ωt ∩ Z

2 : g−(x) ∈ Ωs ∩ Z
2} . (8)

And where #Ω+ and #Ω− are the number of pixels in the masks.

2.2 Deformation Representation

Following [11] we represent the deformation fields as a linear combination of
B-splines. For instance, g+:

g+(x) = g+(x, y)
=
(
g+
1 (x, y), g+

2 (x, y)
)

=
∑

k.l∈Z2

(
c+
1,k,l

c+
2,k,l

)
β3

(
x

sx
− k

)
β3

(
y

sy
− l

)
. (9)

Where β3 is the B-spline of degree 3, ck,l are the B-spline coefficients, and
sx and sy are scalars (sampling steps) controlling the degree of detail of the
representation of the deformation field.

2.3 Explicit Derivatives

The chosen optimizer uses gradient information. We will now calculate the deriv-
atives of the energy function with respect to all the parameters, starting with
Econs. It can be easily shown that the derivative of E+

cons with respect to any of
the deformation coefficients defining the first component (x in our case) of the
direct deformation field g+, is given by

∂E+
cons

∂c+
1,k,l

= −2
∑

x∈Ω+

(
x − g−(g+(x))

) ·
(

∂

∂c+
1,k,l

(
g−(g+(x))

))
. (10)

Where

∂

∂c+
1,k,l

(
g−(g+(x))

)
=

(
∂g−1
∂x

∣∣∣∣
x′,y′

,
∂g−2
∂y

∣∣∣∣
x′,y′

)
∂g+

1

∂c+
1,k,l

∣∣∣∣∣
x,y

. (11)

And where
x = (x, y) . (12)
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And
(x, y) = g+(x, y) . (13)

Again, following the definition of the transformation function we express its
derivative with respect to the coefficients of the first component as

∂g+
1 (x, y)

∂c+
1,k,l

= β3
(

x

sx
− k

)
β3

(
y

sy
− l

)
. (14)

This derivative is the same in the case of the second component.
The derivative of E+

cons with respect to any of the deformation coefficients of
the second component of the direct deformation field is calculated in an analo-
gous way.

Let us see now the derivate of E+
cons with respect to the coefficients of the first

component of the inverse transformation:

∂E+
cons

∂c−1,k,l

= −2
∑

x∈Ω+

(
x − g−(g+(x))

) ·
(

∂

∂c−1,k,l

(
g−(g+(x))

))
. (15)

Where

∂

∂c+
1,k,l

(
g−(g+(x))

)
=

∂

∂c+
1,k,l

(
g−(x′, y′)

)
= β3

(
x′

sx
− k

)
β3

(
y′

sy
− l

)
. (16)

The derivative of E+
cons with respect to any of the deformation coefficients of

the second component of the inverse deformation field can be calculated in an
analogous way. The derivatives of E−

cons are easily inferred in a similar way. We
refer to the original article [11] for the derivatives of Eimg, Eµ and (Ediv +Erot).

3 Choice of wc

All the energy terms of the functional represent different measurements over
the images or the deformations, thus presenting different units. Therefore, the
terms are not comparable and a weight term is needed. We determined the op-
timum value experimentally. While value of zero is useful to compare results
with the previous algorithm, weight values around 10.0-30.0 often showed the
best compromise between the final similarity and the deformation consistency
for our images. Higher values make the consistency constraint too rigid and con-
sequently decrease the images similarity. Lower values cause the lack of relevance
between g+ and g− in the optimization process and thus do not achieve symmet-
ric transformations. Fig. 1 shows the evolution of the similarity and consistency
errors with respect to wc. The consistency error decreases with the weight but
causes a significant increase in the similarity error when approaching to values
close to 100. The similarity error is defined as the energy of the difference be-
tween the target and the warped source image, while the consistency error is the
consistency energy explained above.

For the rest of weight terms we refer to [11]. From our own experience we
recommend to set wi to 1.0 and if necessary, wµ to 1.0 and wd and wr to 0.1.
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Fig. 1. Evolution of the similarity and consistency error with increasing values of the
consistency weight

4 Results

To evaluate our algorithm we tested its performance using synthetic images. We
applied some known deformations to the images and then checked whether our
method could correct the deformation. That also allowed us to compare our al-
gorithm with the standard one [11]. For instance, in Fig. 2 we have registered
a Lena picture with a deformed version of the same image. In this case, the
standard method properly registers the deformed image with the original one,
but is unable to find the inverse deformation field without using soft landmarks,
regularization values and a specific image mask. In the same example, our al-
gorithm finds simultaneously both deformation fields (direct and inverse) using
only the similarity term and the consistency term of the energy function.

Fig. 3, 4, and 5 contain a relevant example of the results obtained applying our
algorithm compared to the results obtained with the original method (lacking
the consistency term) using two consecutive histological sections from breast
cancer tissue.

Fig. 4 shows the deformation fields calculated with both methods. It is easy
to see how our method guarantees the consistency between the direct and the
inverse transformation while the traditional method does not.
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Fig. 2. From top to down, left to right: source image, target image, registered source
image (by the standard method), registered source image (by our new method), regis-
tered target image (by our new method)

Fig. 3. Two consecutive histological sections from a human biopsy presenting two big
tumors

In Fig. 5 we show the result of subtracting the deformed source and target im-
ages. We can appreciate how for the inverse transformation our method achieves
a much better result than the standard method, as we expected by observing the
deformation fields on Fig. 4. These results were also evaluated numerically obtain-
ing an average of similarity error 31.63 of and 32.68 for the deformations calcu-
lated with the original method (direct-inverse and inverse-direct) and an average
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Fig. 4. Comparison of the deformation fields obtained with the original method de-
scribed in [11] and our new algorithm over the images in Figure 2. The first row shows
the deformation when registering image 1 to 2 (left) and image 2 to 1 (right), applying
the traditional energy functional. The second row shows the same deformations when
using the proposed improvement.

of 31.48 and 31.66 for the deformations of our new method. The differences be-
tween the inverse-direct averages provoke visible changes on the registration as
shown in the deformation fields representations on Fig. 4.

The gray-scale sample images in Fig. 3 have respectively 325x325 pixels and
300x312 pixels and it took 18 seconds to properly register them in an Intel
Pentium M, 1.60 GHz, 589 MHz, 512MB of RAM memory, under a SuSE Linux
system.

Fig. 6 is another example with breast tissue sample where the standard
method is unable to approach any proper deformation between the source and
target images based in the images similarity but where our new method achieves
easily the right deformation thanks to the consistency term.

As inferred from the experimental results using our bidirectional method, in
most cases only the similarity and the consistency term are needed to achieve a
proper registration. This involves a simplification of the energy functional to be
minimized and therefore, a reduction in the computational time and complexity.
At the same time, forgetting about placing soft landmarks in the images allows
us reducing the human interaction in the registration process, which is another
advantage of our algorithm over the previous method.
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Fig. 5. The top row shows the subtractions of the deformed images and the target ones
in both senses, using the traditional method. The bottom row shows the result when
applying our method. The black arrow points the most relevant error committed by
the standard method.

5 Conclusion and Future Work

A new algorithm for consistent elastic registration has been presented. It com-
bines the ideas of elastic image registration based on B-splines models and con-
sistent image registration. The method improves the results obtained without the
consistency factor in the energy function, as it has been qualitative and numer-
ically shown in the results section, and accelerates the search for the optimum.
We are aware that a more detailed quantitative evaluation of the algorithm is
necessary. This evaluation is currently in progress.

This method can be extended increasing the number of images involved in the
registration to do group-wise registration. For this case, the explicit derivatives
must be recalculated and a method for composing the deformation fields needs
to be proposed.
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11. Sorzano, C.O.S., Thévenaz, P. and Unser, M.: “Elastic Registration of Biological
Images Using Vector-Spline Regularization”, IEEE Transactions on Biomedical
Engineering, vol. 52, no. 4, pp. 652-663, April 2005.



Comparative Analysis of Kernel Methods
for Statistical Shape Learning

Yogesh Rathi, Samuel Dambreville, and Allen Tannenbaum	

Georgia Institute of Technology, Atlanta, GA, 30332, USA
{yogesh.rathi, samuel.dambreville, tannenba}@bme.gatech.edu

Abstract. Prior knowledge about shape may be quite important for
image segmentation. In particular, a number of different methods have
been proposed to compute the statistics on a set of training shapes,
which are then used for a given image segmentation task to provide the
shape prior. In this work, we perform a comparative analysis of shape
learning techniques such as linear PCA, kernel PCA, locally linear em-
bedding and propose a new method, kernelized locally linear embedding
for doing shape analysis. The surfaces are represented as the zero level
set of a signed distance function and shape learning is performed on the
embeddings of these shapes. We carry out some experiments to see how
well each of these methods can represent a shape, given the training set.

1 Introduction

Image Segmentation has been a topic of extensive research in the computer vision
community [1,2,3,4].One of the challenges in the field of image segmentation is
the incorporation of prior shape knowledge in the segmentation process [5]. Many
different methods (using both parameterized or implicit representation of shapes)
have been proposed [6,7,8,9,10] to perform statistical shape analysis on a given
set of training shapes. In this work, we perform a comparative analysis of several
key techniques such as linear PCA (LPCA), kernel PCA (KPCA), locally linear
embedding (LLE), and then propose a new method, kernelized locally linear
embedding (KLLE) which will be compared with the aforementioned techniques.

There is a large body of literature available for representing a curve or surface
using parameterized as well as implicit methods; see [3,11,12] and the references
therein. A number of methods have been proposed, using these representations, to
study the statistical variations in a given set of training shapes. Cootes et al. [6] de-
veloped a parametric point distribution model for describing the segmenting curve
by using linear combinations of eigenvectors that reflect variations from the mean
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shape. In [13], Wang and Staib developed a statistical point model by applying lin-
ear PCA to the covariance matrices that capture the statistical variations of the
landmark points. Recently, Leventon [9] proposed a more general model wherein
PCA was performed on a set of signed distance functions. Kernel PCA has been
successfully used by the machine learning community for pattern recognition and
image denoising [14]. A Gaussian kernel was used by Cremers et al. [8] for learning
shape statistics in the kernel space to provide shape prior for segmentation tasks.
Finding the pre-image of the projection in the kernel space is one of the challeng-
ing tasks in visualizing and computing the performance of these kernel based tech-
niques. In this work, we use the method proposed by [15] to find the pre-image of
the projection in the KPCA space and compare it with LPCA.

Locally linear embedding has been widely used for dimensionality reduction
and extracting out the nonlinearities in the training data set. In this work, we
use LLE to represent a given shape using a linear combination of its nearest
neighbors. We further develop this algorithm and propose a new method to per-
form LLE in the kernel space, called KLLE, and show that it is better than LLE,
LPCA and is comparable to KPCA in terms of performance but with fewer com-
putations. Of course, the literature reviewed above is by no means exhaustive.
We merely want to point out a new technique that has some attractive features
which may act as an alternative to some already existing methodologies.

The rest of the paper is organized as follows: In the next section we briefly
describe LPCA, KPCA, LLE and provide details about KLLE. In section 3, we
show with examples how well each of these methods perform on a given data
set. Section 4 gives conclusion and future research directions.

2 Statistical Models

This section briefly describes each of the shape learning techniques used later in
the sequel. Let τ be the training set τ = {φ1, φ2, . . . , φn} consisting of n signed
distance functions (SDF) with the shapes represented by the corresponding zero
level sets. It is assumed that all the φi’s are aligned using a suitable method of
registration [6].

2.1 Linear PCA

Linear PCA is widely used to learn the statistical variations of a given set of
data (shapes, in our case). LPCA assumes that the set of permissible shapes
form a Gaussian distribution, i.e., all possible shapes can be written as a lin-
ear combination of a set of eigenshapes obtained by doing principal component
analysis on the training data set [10,9]. The eigenshapes can be obtained as fol-
lows: Let φi represent the signed distance function corresponding to the surface
Si. The mean surface, µ, is computed by taking the mean of the signed distance
functions, µ = 1

n

∑
φi. The variance in shape is computed using PCA, i.e., the

mean shape µ is subtracted from each φi to create a mean-offset map φ̄i. Each
such map, φ̄i, is placed as a column vector in an Nd × n-dimensional matrix M,
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where φi ∈ RNd

. Using Singular Value Decomposition (SVD), the covariance
matrix 1

nMMT is decomposed as:

UΣUT =
1
n

MMT (1)

where U is a matrix whose column vectors represent the set of orthogonal modes
of shape variation (eigenshapes) and Σ is a diagonal matrix of corresponding
eigenvalues. An estimate of a novel shape Φ of the same class of object can
be obtained from m principal components using an m-dimensional vector of
coefficients,

α = UT
m(Φ − µ), (2)

where Um is a matrix consisting of the first m columns of U . Given the coefficients
α, an estimate of the shape Φ, namely Φ̃, can be obtained as [9,10]:

Φ̃ = Umα + µ. (3)

2.2 Kernel PCA

Kernel methods, in particular, kernel PCA has been the focus of research in the
pattern recognition community[16,17]. The basic idea behind these methods is
to map the data in the input space φ ∈ χ to a feature space F via some nonlinear
map Ψ , and then apply a linear method in F to do further analysis. Kernel PCA
[14] is a nonlinear feature extractor, where PCA is performed in the feature space
F which is equivalent to doing nonlinear PCA in the input space χ. Since the
nonlinear map Ψ is not known, a challenging problem is to find the pre-image of
the projection obtained by doing PCA in the feature space F . As demonstrated
by Mika [16], the exact pre-image typically may not exist and one can only
settle for an approximate solution. But even this may be non-trivial as the
dimensionality of the feature space can be infinite. For certain invertible kernels,
this nonlinear problem can be solved using a fixed-point iteration method as
proposed by Scholkopf and Mika [14,16]. However, this method is dependent on
the initial starting point and is highly susceptible to local minima. To circumvent
this problem, [17] and more recently [15] proposed an algorithm to reconstruct
an approximate pre-image of the projection as described briefly in the remainder
of this section.

Kernel PCA performs the traditional linear PCA in the feature space cor-
responding to the kernel k(., .). The kernel defines the inner product between
two points in the feature space, i.e., k(φ1, φ2) =< Ψ(φ1), Ψ(φ2) >. This fact
can be used to obtain the eigenvectors in the feature space F even though the
non-linear map Ψ is unknown. Analogous to linear PCA, it involves the following
eigen-decomposition

HKH = UΣUT ,

where, K is the kernel matrix with entries Kij = k(φi, φj), H is the centering
matrix given by

H = I − 1
n
11T ,
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I is the n × n identity matrix, 1 = [11...1]T is an n × 1 vector, U = [a1, ...,an]
with ai = [ai1, ..., ain]T is the matrix containing the eigenvectors and Σ =
diag(λ1, ..., λn) contains the corresponding eigenvalues. Denote the mean of the
Ψ -mapped data by Ψ̄ = 1

n

∑n
i=1 Ψ(φi) and define the “centered” map Ψ̃ as :

Ψ̃(φ) = Ψ(φ) − Ψ̄ .

The k-th orthonormal eigenvector of the covariance matrix in the feature space
can then be shown to be [14]

Vk =
n∑

i=1

aki√
λk

Ψ̃(φi).

Denote the projection of the Ψ -image of a test point Φ onto the k-th component
by βk. Then,

βk =
1√
λk

n∑
i=1

akik̃(Φ, φi), (4)

where,

k̃(x, y) =< Ψ̃(x), Ψ̃(y) >= k(x, y) − 1
n
1T kx − 1

n
1T ky +

1
n2 1T K1

with kx = [k(x, φ1), ..., k(x, φn)]T
(5)

The projection of Ψ(Φ) onto the subspace spanned by the first m eigenvectors
is given by :

PΨ(Φ) =
m∑

k=1

βkVk + Ψ̄

To obtain an approximate pre-image of PΨ(Φ) in the input space, we minimize
the error ρ(Φ̂) =‖ Ψ(Φ̂) − PΨ(Φ) ‖2. Following the exposition in [15], for a
Gaussian kernel (also known as radial basis function) given by :

k(φi, φj) = e−
d2(φi,φj)

2σ2 (6)

where d2(φi, φj) is a distance measure in the input space, one can obtain an
approximate pre-image by setting ∇Φ̂ρ = 0 and using the approximation Ψ(Φ̂) ≈
PΨ(Φ). Here, we directly state the result for finding the pre-image Φ̂ (in the input
space χ) of the projection PΨ(Φ) [15]:

Φ̂ =

∑n
i=1 γ̃i

(
1
2 (2 − d̃2(PΨ(Φ), Ψ(φi))

)
φi∑n

i=1 γ̃i

(
1
2 (2 − d̃2(PΨ(Φ), Ψ(φi))

) (7)
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where γi =
∑n

k=1 βkaki and γ̃i = γi + 1
n (1 −∑n

j=1 γj) and d̃2 can be computed
only in terms of the kernel using the following expression [15,17]:

d̃2(Ψ(φi), PΨ(Φ)) =
(

kΦ +
1
n

K1 − 2kφi

)T

HT MH

(
kΦ − 1

n
K1

)
+

1
n2 1T K1 + Kii − 2

n
1T kφi

(8)

where M =
∑n

k=1
1

λk
ak aT

k and Kii = k(φi, φi).
In this work, we have used the following shape similarity measure given by

[18]:

d2(φi, φj) =
∫

p∈Z(φi)
EDTφj(p)dp +

∫
p∈Z(φj)

EDTφi(p)dp, (9)

where EDTφi is the Euclidean distance function of the zero level set of φi (one
can think of it as the absolute value of φi), and Z(φi) is the zero level set of φi.
This distance measure allows for partial shape matching and was shown [15] to
perform better (empirically) than the Euclidean L2 norm. Note that, Φ̂ is only an
approximate pre-image of the projection, since an exact pre-image may not exist.

If we use the kernel k(φi, φj) =< φi, φj >, then KPCA is equivalent to doing
LPCA. Thus, linear PCA is a particular case of kernel PCA. Choosing the right
kernel for a given data set is a topic of active research. In this work we have
used the Gaussian kernel (6), which is the most commonly used kernel in the
machine learning community.

2.3 Locally Linear Embedding

The LLE algorithm [19] is based on certain simple geometric principles. Suppose
the data consists of n vectors φi sampled from some smooth underlying manifold.
Provided there is sufficient data, we expect each data point and its neighbors
to lie on or close to a locally linear patch of the manifold. We can characterize
the local geometry of these patches by a set of coefficients that reconstruct each
data point from its neighbors. In the simplest formulation of LLE, one identifies k
nearest neighbors for a data point. Reconstruction error is then measured by the

cost function: E(W ) =
(
Φ −∑

j wjφj

)2
. We seek to minimize the reconstruction

error E(W ), subject to the constraint that the weights wj that lie outside the
neighborhood are zero and

∑
j wj = 1. With these constraints, the weights for

points in the neighborhood of Φ can be obtained as [20]:

E(W ) =

⎛⎝Φ −
k∑

j=1

wjφj

⎞⎠2

=
k∑

j=1

k∑
m=1

wjwmQjm ⇒ wj =
∑k

m=1 Rjm∑k
p=1

∑k
q=1 Rpq

,

where Qjm = (Φ − φj)T (Φ − φm) and R = Q−1. (10)

In applications where dimensionality reduction is the major objective, one pro-
ceeds further and computes a low dimensional vector corresponding to each φi,
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preserving the neighborhood structure by keeping the weights wj constant [20].
This work uses LLE only for obtaining the neighborhood structure in the training
set and not for dimensionality reduction. Thus, we assume that a closed surface
S can be represented by a linear combination of its k nearest neighbors. Stacking
all the columns of φi one below the other, one can obtain a vector of dimension
D2, if φi is of dimension D × D. Thus, given a test point Φ, one can obtain
the weights using equation (10) that minimize the reconstruction error E(W ).
The nearest neighbors are obtained from the training set by finding the squared
distance d2 (equation 9) between Φ and each of the shapes φi in the training set.

2.4 Kernel LLE

Mercer kernels have been used quite successfully for learning in Support Vector
Machines (SVM) and in KPCA as mentioned before. The above LLE algorithm
can be generalized for nonlinear manifolds by employing the kernel trick [14]. In
[21], the author compares the discriminative power of LLE, KLLE and LPCA by
projecting the training data to a lower dimensional space and thereby comparing
the recognition rate of a given test sample. The methods presented in this work
are quite different than those proposed in [21], since we do not compute a low
dimensional data for LLE or KLLE, but compare their performances in the
input space itself. This is quite essential for shape analysis in which one needs to
compute how accurately a given data point can be reproduced in the input space
using these techniques. Thus, the method proposed in [21] uses LLE, KLLE only
for classification purposes, while we utilize it to see its performance in the input
space. A major contribution of this work is the formulation of a method to find
the pre-image of the projection in the kernel space, given the fact that we do
not know the mapping Ψ .

The basic idea behind KLLE is to minimize the error (given a test point Φ)

E(W ) =
(
Ψ(Φ) −∑

j wjΨ(φj)
)2

. Proceeding as shown in LLE before, we get
the following expression for the weights:

wj =
∑k

m=1 Rjm∑k
p=1

∑k
q=1 Rpq

where,

Qjm = (Ψ(Φ) − Ψ(φj))T (Ψ(Φ) − Ψ(φm)) = k(Φ, Φ) − k(Φ, φm)

− k(Φ, φj) + k(φj , φm) and R = Q−1.
(11)

The weights wj so obtained minimize the error E(W ) in the feature space F ,
i.e., Ψ(Φ) =

∑k
j=1 wjΨ(φj) +

√
E = Ψ(Φ̂) +

√
E. Assuming E to be small, we

have Ψ(Φ) ≈ Ψ(Φ̂). Our goal now is to find the pre-image of Ψ(Φ). However,
an exact pre-image of Ψ(Φ) may not exist [16], hence we find an approximate
pre-image of Ψ(Φ) in the input space χ. Thus, we want to find the point Ψ(z)
which is closest to Ψ(Φ) and for which the pre-image can be computed. This can
be achieved by minimizing the following:

ρ(z) = ‖ Ψ(z) − Ψ(Φ) ‖2 ≈ k(z, z) − 2
∑

j

wjk(z, φj) + k(Φ, Φ),
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where we have substituted the approximation for Ψ(Φ). Setting ∇zρ(z) = 0 and
using the kernel k(z, Φ) = exp(− ‖z−Φ‖2

2σ2 ), one gets the following expression for
finding z:

z =

∑k
j=1 wjk(z, φj) φj∑k

j=1 wjk(z, φj)
(12)

This equation contains z on both sides of the equation and hence can be solved by
fixed-point iteration technique. However, the solution will depend on the starting
point and will be very susceptible to local minima. A unique (but approximate)
solution to z can be found by noting that

k(z, φj) = < Ψ(z), Ψ(φj) > ≈ < Ψ(Φ), Ψ(φj) > = k(Φ, φj)

where we assume Ψ(Φ) ≈ Ψ(z). Note that this assumption is valid since we are
trying to find the point Ψ(z) that is closest to Ψ(Φ). The error in the computed
pre-image will be proportional to the error in approximating Ψ(z) = Ψ(Φ), which
in general can be assumed to be small. As shown in [15], better results can be
obtained if the distance measure (9) (for d2) is used in the Gaussian kernel
instead of the Euclidean L2 norm and hence we use it in all our experiments as
described in the next section.

A pre-image can be computed not only for a Gaussian kernel, but for any
invertible kernel. If we assume a polynomial kernel k(φi, φj) =

(
c + φT

i φj

)d,
where d is the degree of the polynomial and c is any constant, then the pre-
image z of a point Ψ(Φ) is given by

z =

∑k
j=1 wjk(Φ, φj)

d−1
d φj

k(Φ, Φ)
d−1

d

(13)

Thus, LLE is a particular case of KLLE with a polynomial kernel of degree
d = 1 and c = 0. Once again, the k nearest neighbors can be computed using the
distance relation (9) or any other metric on the space of shapes [22,11,7,23,24,25].

3 Experiments

In this section, we describe two experiments to test how well each method per-
forms given a training set of shapes. The first set of 3D shapes consists of the
left caudate nucleus and the second set consists of the left hippocampus. These
are structures in the brain for which a shape prior is often used in segmentation
algorithms. A typical measure to test the performance of these methods is to
see how well an unknown shape gets projected by each of these methods. In this
work, a quantitative measure was calculated by finding the number of voxels
that got mislabelled, i.e., by finding the set symmetric difference between the
projection and the original test shape.

The training set for the caudate nuclei consisted of 26 elements, each of them
embedded in a signed distance function. Figure 1 shows a few shapes in the
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training set. In Figure 2, an “unseen shape” (i.e., a shape not in the training set)
is shown and also the pre-image of the projection using each of the methods.
Table 1 shows the number of mislabeled voxels for each of the methods. For
LPCA and KPCA, 20 coefficients were used in finding the projection while for
LLE and KLLE 20 nearest neighbors were used so that we do not obtain biased
results in favor of a particular method. Clearly, the kernel methods perform
better than their linear counterparts. More specifically, KLLE performs almost
as well or better than KPCA, but with a smaller computational burden.

Table 1. Mislabelled voxels for left caudate nucleus

Volume Volume Size LPCA LLE KPCA KLLE
1 2750 119 50 37 42
2 3774 134 105 92 81
3 2489 108 66 57 52

Fig. 1. Sample shapes of left Caudate nucleus from the training set

The second training set of the hippocampii data contained 22 elements. Figure
3 shows a few shapes from the training set and figure 4 shows the original and
pre-images of projection for each of the methods. For this experiment, we used 15
coefficients for LPCA and KPCA and 15 nearest neighbors for LLE and KLLE.
Table 2 gives the number of mislabelled voxels for each of the methods. Figure 5
shows the weights assigned to each of the neighbors (for all the three test shapes)
using LLE and KLLE. Clearly, KLLE assigns larger weights to points closer to
the test shape than to points farther away. Thus, only points in the locally linear
patch of the feature space are assigned significant weights, whereas other points
are assigned weights close to zero. This nonlinear distribution is expected since
we used a Gaussian kernel. Once again, it is clear that KLLE performs better
than all the other methods. It should be noted that, LLE and KLLE can perform
even better with the proper choice of the number of nearest neighbors as given
in [20]. To make a fair assessment of each method, we kept k (nearest neighbors)
fixed and did not optimize the algorithm as given in [20].

Table 2. Mislabelled voxels for left hippocampus

Volume Volume Size LPCA LLE KPCA KLLE
1 1117 440 378 322 296
2 1108 306 258 212 205
3 1568 804 574 494 371
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(a) Original (b) LPCA

(c) LLE (c) KPCA

(e) KLLE
Fig. 2. Projection of left Caudate nucleus (Volume 1) using each of the methods

Fig. 3. Sample shapes of left hippocampus from the training set

In all of the experiments above, the parameter σ used in the Gaussian kernel
was fixed to be some function of the average minimum distance between shapes
in the training set [8], i.e., σ2 = c 1

n

∑n
i=1 minj �=id

2(φi, φj)., where c is a user
defined real number. The training data (hand segmented shapes) was obtained
from the NAMIC data repository of the Brigham and Women’s Hospital, Boston,
MA. The entire code was written in C++ using the ITK and VTK libraries.

4 Remarks

In this paper, we have proposed a new algorithm for finding an approximate
pre-image of a point in the kernel space in the context of Kernel LLE which
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(a) Original (b) LPCA (c) LLE

(d) KPCA (e) KLLE

Fig. 4. Projection of left Hippocampus (Volume 3) using each of the methods
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Fig. 5. Weights assigned to the 15 nearest neighbors by LLE and KLLE for each of the
test shapes of hippocampus. On the x-axis, 1 is the closest neighbor, 15 is the farthest.
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is a generalization of LLE to the kernel space. We have compared this method
with other methods such as linear PCA, kernel PCA and LLE in terms of its
capability to represent unseen shapes. Experiments show that it performs better
than LPCA and LLE and is comparable to KPCA, but with considerably fewer
computations. We certainly do not claim that KLLE is the best method to use
for any given training set of shapes, but it did give good results on the training
data on which it was tested.

Nevertheless, representing a shape using its nearest neighbors requires that
the training set contain sufficient data points. LPCA and KPCA have an in-
nate capability to “produce” shapes by varying the PCA coefficients. This is not
the case with LLE or KLLE. On the other hand, if sufficient amount of data
is available, LLE and KLLE can perform better than PCA based algorithms.
Another advantage of LLE and KLLE is that they allow one to learn shapes
of completely different geometries, within the same training set. The reason for
this is that these methods use only their nearest neighbors to find the projection
instead of using the entire training set which is the case with KPCA and LPCA.
One of the reasons why the kernel methods work better than their linear coun-
terparts is that, the set of signed distance functions (SDF) is not closed under
addition. Thus, the variations captured by linear methods are the variations in
the SDF’s and not in the embedded shapes, whereas the kernel methods capture
the variations in shapes and not the embeddings. We should also note that, the
performance of all these methods will get better if one has a large training set
(with shapes of the same object).

In this work, we have used signed distance function to represent shapes. How-
ever, the algorithms used here do not depend on any particular type of repre-
sentation. Performing a detailed comparative analysis using all of these methods
with different representations (parametric and implicit) for shapes is the subject
of future research. We would also like to test these methods on a wide variety of
shapes with varying sizes of the training data set.
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Abstract. Dynamic emission tomography is a technique used for quanti-
fying the biochemical and physiological processes within the body. For cer-
tain neuroimaging applications, like kinetic modelling in positron emission
tomography (PET), segmenting the measured data into a fewer number of
regions-of-interest (ROI) is an important procedure needed for calculation
of regional time-activity curves (TACs). Conventional estimation of re-
gional activities in image domain suffers from substantial errors due to the
reconstruction artifacts and segmentation inaccuracies. In this study, we
present an approach for separating the dynamic tomographic data directly
in the projection space using the least-squares method. Sinogram ROIs are
the fractional parts of different tissue types measured at each voxel. Re-
gional TACs can be estimated from the segmented sinogram ROIs, thereby
avoiding the image reconstruction step. The introduced technique was val-
idated with the two dynamic synthetic phantoms simulated based on 11C-
and 18F-labelled tracer distributions. From the quantitative point of view,
TAC estimation from the segmented sinograms yielded more accurate re-
sults compared to the image-based segmentation.

1 Introduction

Dynamic emission tomography is a quantitative technique able to provide impor-
tant information about physiological parameters indicating the functional state
of the inspected tissue. The physiology relates to dynamic or temporal processes
and, therefore, collecting also temporal information is necessary for the quan-
titative analysis of these processes unlike in structural imaging. In emission to-
mography, for example positron emission tomography (PET), the spatial distri-
bution of a specific chemical compound containing radioactive nuclei across the
time instances is assessed. At each time interval the measurements are recorded
as a number of coincident positron and electron annihilations occurred along
the path, or the line of response (LOR). The collection of such events (counts)
detected at each LOR is conventionally called a sinogram. A sequence of ac-
quisitions at contiguous time intervals ranging from a few seconds to tens of
minutes yields the dynamic sinogram data (usually 4-D volumes). Dynamic im-
ages are further independently reconstructed from the raw data using various
image reconstruction algorithms.

R.R. Beichel and M. Sonka (Eds.): CVAMIA 2006, LNCS 4241, pp. 108–119, 2006.
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In the field of dynamic PET imaging, considerable attention has been focused
on image quantification and estimation of kinetic physiological parameters [1].
Such parametric images provide quantitative information and are extensively
used in clinical and research environments to assess and describe the tracer’s
behavior in homogeneous regions [2]. Reliable identification of regions-of-interest
(ROIs) matching the anatomical structures is an important step, followed by the
spatial averaging of the PET activity over the regions at each time frame. A set
of kinetic parameters are further estimated by fitting a kinetic model to the time
sequence of averaged regional activities.

The typical approach for ROI extraction involves manual grouping (segment-
ing) the time-averaged image voxels into spatial regions, and further, projecting
those ROIs framewise to the dynamic data. Apparently, manual segmentation
is often expensive, time-consuming, and operator-dependent task. Automatic
methods for dynamic PET classification have gained particular interest dur-
ing last decade. Most of them utilize the distinctive characteristics of tissue-
dependent time activity curves (TACs) to partition the dynamic images into a
smaller number of classes. This process is often called an image-based segmenta-
tion. Previous studies addressing the automatic segmentation to cluster analysis
[3]-[7], principal component analysis [8], and independent component analysis [9]
can be emphasized.

An approach based on analyzing the dynamic behavior of voxel intensities
in the image space suffers from two serious drawbacks. First, it involves the
time-consuming reconstruction of the whole volume of sinogram data prior to
segmentation (e.g. 840 2-D sinograms for the dataset consisting of 24 time frames
and 35 spatial planes). Moreover, reconstruction process tends to introduce var-
ious kinds of artifacts to the obtained images due to noise and finite amount of
measured data. Hence, the segmented image may often become an inaccurate
estimate for the required ROIs, while the estimated regional tissue-TACs may
suffer from the reconstruction and segmentation errors.

In this work, we present a method for segmenting the dynamic projection
data directly in the sinogram space. This strategy allows skipping the image
reconstruction routine and, as a consequence, alleviating the additional noise
effects. The algebraic formulation of the discrete Radon transform forms the
basis of the sinogram segmentation approach. The main advantage is that the
direct least-squares solution to the problem via pseudo-inverse exists, and no
iterative approximation is needed. Thus, the segmentation is fast, simple, and
flexible as it can be applied to high resolution 4-D scans. The work relates to
the earlier direct methods for ROI evaluation in a projection space by Formiconi
[11] and Reutter [12].

The noiseless segmentation model can be directly transformed into more real-
istic one, when measurement errors and statistical variations are present in the
observations. The probabilistic model describing the true TAC as a realization
of random variable with known distribution is described in section 2.2.

A new segmentation approach is beneficial for quantification. With numerical
simulations we show that the mean tissue TACs extracted from the noisy mea-
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surement data does not depend upon the errors coming from erroneous segmen-
tation and image reconstruction. This is a significant advance which improves
the quantification accuracy and speeds up the acquisition of physiological para-
meters.

2 Sinogram Segmentation

2.1 Deterministic Approach to the Sinogram Segmentation

Let the dynamic image x = [x1(t), x2(t), . . . , xN (t)]T be a sequence of N deter-
ministic variables, where [·]T denotes vector or matrix transpose. We view x as
a vector consisting of N voxels, where each voxel xi(t) = [xi(1), . . . , xi(M)] is
itself represented as an M -dimensional vector and describes the concentration of
the tracer at time frame t = 1, . . . , M . The vector xi(t) is conventionally called
the time activity curve (TAC). We assume that x consists of a known number
of tissue components K, while each voxel contains the structure of only one
dominant type.

The projection of the image x to the discrete Radon transform space as a set
of simultaneous linear equations is defined as [10]

g = Hx, (1)

where g = [g1(t), g2(t), . . . , gD(t)]T is the resulting sinogram sequence. Each bin
gd(t) = [gd(1), . . . , gd(M)] is again viewed as an M -dimensional sinogram time-
intensity vector. The length of g is equal to D that gives the total number of lines
of response (LORs) for all detection pairs. H is the matrix of weighting factors
with entries hdi : d = 1, . . . , D; i = 1, . . . , N that represent the contribution of
the i-th pixel to the d-th detector. In more informative way, the factor hdi is
equal to the fractional area of the i-th voxel intercepted with the d-th LOR. In
a matrix-vector form (1) can be rewritten as⎡⎢⎢⎢⎣

g1(t)
g2(t)

...
gD(t)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
h11 h12 . . . h1N

h21 h22 . . . h2N

...
...

. . .
...

hD1 hD2 . . . hDN

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

x1(t)
x2(t)

...
xN (t)

⎤⎥⎥⎥⎦ .

The set of linear simultaneous equations (1) is often referred to as algebraic
formulation for the discrete Radon transform. Due to the large size of H, direct
matrix inversion (for square H) or the least-squares methods via pseudo-inverse
(when N �= D) are often impractical for estimating x from g. A subset of
iterative reconstruction algorithms, historically called algebraic reconstruction
(AR) techniques, have been proposed in literature to solve a set of D linear
equations (see e.g. [10]).

Assume that the N -dimensional vector x is partitioned with a set of K homo-
geneous regions. The TAC at each region is assumed to be space invariant, hence
x consists of a multiple copies of K tissue-TACs. Let Z = {zk(t), k = 1, . . . , K}
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be a set comprising of K true time activity vectors such that xi(t) ∈ Z. Then
z = [z1(t), z2(t), . . . , zK(t)]T be the sequence corresponding to the set Z, where
each element zk(t) is again viewed as an M -dimensional vector.

The discrete Radon transform of the image x can be written in terms of a
few TACs z describing the structures of interest as

g = Bz, (2)

or in matrix-vector form as⎡⎢⎢⎢⎣
g1(t)
g2(t)

...
gD(t)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
b11 b12 . . . b1K

b21 b22 . . . b2K

...
...

. . .
...

bD1 bD2 . . . bDK

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

z1(t)
z2(t)

...
zK(t)

⎤⎥⎥⎥⎦ .

Matrix B is the mixing matrix defining the constant multiplicative factors for
the vector z. The element bdk of the matrix B relates to the elements hdi of the
matrix H through the following equation

bdk =
∑
i∈Ωk

hdi, (3)

where Ωk denotes the set of image voxels belonging to a homogeneous region k. In
other words, we explain each sinogram voxel gd(t) in terms of K latent variables
zk(t) mixed linearly with the respective coefficients bdk. The equation (2) is a
direct generalization of the model for ROIs evaluation derived by Formiconi [11]
for static projections. In [12] Reutter has used a similar parameterization for
estimating the spatiotemporal distribution in dynamic SPECT.

We suppose that the knowledge about the TAC for each structure (i.e. the
matrix z) is known a priori. So, the task of sinogram segmentation is recasted
to estimating the unknown matrix B.

2.2 Probabilistic Formulation of the Sinogram Segmentation
Approach

The real-world emission tomography images are the product of a radioactive
decay that is a random process. The detected number of counts per each voxel
xi(t) taken from the particular structure k can be modelled as a realization of a
random variable distributed with the multivariate Poisson density1

p(xi(t); λk(t)) = p(zk(t); λk(t)) =
λk(t)zk(t)e−λk(t)

zk(t)!
, (4)

1 We take into account only noise coming from a statistical nature of the decay process,
while leaving the additional sources of errors due to e.g. attenuation correction,
accidental coincidences, detector normalization and biological variations aside. This
is done solely for the sake of simplicity.
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which is fully characterized by the M -dimensional mean vector λk(t). The de-
tected sinogram counts gd(t) at voxel location d are the sum of realized outcomes
xi(t) along the ray path. Since the sum of independent Poisson random variables
is also a Poisson random variable, gp(t) has the following density function

p(gd(t); µd(t)) =
µd(t)gd(t)e−µd(t)

gd(t)!
(5)

with mean µd(t) =
∑K

k=1 bdkλk(t).

2.3 Estimation of Matrix B

The d-th sinogram voxel intensity from (2) can be written as

gd(t) = bdz, (6)

where bd is the d-th row of matrix B. For each sinogram TAC gd(t) we have to
solve M equations with K unknowns. Since the number of observations M is
usually larger than the number of distinct components K, matrix system (6) is
overdetermined, and the least-squares solution to this problem can be found by
minimizing

min
bd

‖gd(t) − bdz‖2. (7)

At each gd(t), K pure tissue types from the image x are mixed with the respective
multiplicative coefficients bd1, . . . , bdk. Equation (7) can be solved, for example,
via the pseudo-inverse of z. If the matrix z is ill-conditioned, regularized solution
to the system of overdetermined equations can be found (e.g. with the truncated
singular value decomposition (TSVD) [13]).

2.4 Extraction of Average Tissue TACs in Image and Sinogram
Domains

In parametric imaging the primary goal is to produce images which specify the
kinetic parameters related to the tracer specific block-model. These parameters
are typically estimated based on the mean TACs calculated within each homo-
geneous ROI [2].

In the image domain the task of calculating the k-th mean tissue TACs is
realized by averaging the PET activity frame-wise over the respective region-of-
interest

z̃k(t) =
1

Nk

∑
i∈Ωk

xi(t), (8)

where Ωk is the set of image voxels belonging to the k-th ROI, and Nk is the
total number of voxels in Ωk.

In the sinogram domain, once the segmented sinogram matrix B has been es-
timated, the average TACs can be extracted by minimizing the criterion function
with respect to z

min
z

‖g − Bz‖2. (9)
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Fig. 1. (a) Time-averaged 28th plane of the Raclopride phantom. (b) TACs from six
tissue types.

3 Numerical Experiments

3.1 Sinogram Segmentation from Noiseless Simulations

In this study, we examined the performance of the sinogram segmentation us-
ing an anatomical Zubal phantom [14] for the 11C Raclopride tracer. The 11C-
labelled Raclopride is used to assess the local density of D2 dopamine receptors
in the brain. The phantom consisted of eight distinct structures: caudate nu-
clei (right and left), putamen (right and left), white matter (WM), gray matter
(GM), cerebellum, blood pool, skin and fat/muscle structures. Realistic TACs’
characteristics of Raclopride were determined from human studies and assigned
to appropriate structures [15]. The simulated imaging protocol lasted for 1 hour:
1 frame of 15 s, 5 frames of 30 s, 1 frame of 45 s, 6 frames of 60 s, 1 frame of 90
s, 4 frames of 120 s, 1 frame of 210 s, 6 frames of 300 s, and 1 frame of 150 s. In
total, phantom consisted of 27 time frames of data volumes with 128× 128 × 63
voxels per each frame. Synthesized images were re-projected to a noiseless se-
quence of dynamic 2-D sinograms each comprised of 336 angular projections
and 275 bins per each projection. Figure 1(a) shows the time-averaged plane 28
of the phantom which includes seven different structures. The TACs from six
representative tissue types are displayed in figure 1(b).

For each sinogram bin gd(t), system (6) contained 28 equations and 3 un-
knowns. By finding the minimum norm solution to the equation (7), the multi-
plicative factors bk for every tissue type were found. They are depicted in figure
2 as separate sinograms.

3.2 Extraction of Average TACs from Noisy Simulations

The average TAC extraction from noisy simulations was performed in the image
and sinogram domains, and results were quantitatively compared. In the image
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Fig. 2. The multiplicative factors {bk : k = 1, . . . , K} depicted as separate sinograms
for the seven tissue types present in the 28th plane of the Raclopride phantom. From
left to right: skin, GM, WM, blood pool, putamen, caudate, fat/muscle.

domain the following procedure was used: 1) the discrete Radon transform oper-
ator was applied for projecting the dynamic Raclopride phantom to the sinogram
space, 2) the Poisson noise was generated for the every sinogram bin gd(t) using
pseudo-random number generator, 3) the constructed sequence of noisy sino-
grams was reconstructed back to the image space using filtered-backprojection
(FBP) reconstruction algorithm, 4) given the vector λk(t), the Bayes classifier
was applied for each tissue type

ωi = arg max
i=1,...,K

πkp(xi(t); λk(t)), (10)

where ωi is the label of the voxel i, and πk is the prior probability for the class
k. The mean tissue TACs {z̃k(t) : k = 1, . . . , K} were obtained by averaging the
voxels belonging to the same structure, as given by (8).

In the sinogram domain the TACs were retrieved from the sequence of noisy
sinograms projected from the phantom data. Knowing the mean vector of the
Poisson activity λk(t), the segmented sinogram matrix B was found using the
least-squares method. The averaged TACs were directly evaluated using equa-
tion (9).

For both methods 3-D ROIs were delineated, and averaging was applied for all
the voxel intensities belonging to a particular ROI. For each structure the root
mean-square error (RMSE) between the true and estimated TAC was evaluated
by the following equation

RMSE =

√√√√ 1
M

M∑
t=1

(zk(t) − z̃k(t))2. (11)

The errors for different structures and different evaluation methods are summa-
rized in Table 1.

For the image-based segmentation (reconstruction + ROI estimation) the re-
sults varied significantly for different tissues. Skin TAC was underestimated due
to the certain amount of background pixels incorrectly labelled as belonging to
skin structure. Sizeable portion of caudate and cerebellum voxels were classified
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Table 1. The root mean-square error (measured in nCi/ml) between the true TACs
and average TACs estimated in the image and sinogram domains

Image-based segmentation
Structure Reconstruction Reconstruction No reconstruction Sinogram-based

+ ROI estimation + true labelling + ROI estimation segmentation
Skin 2.061 1.106 0.005 0.009
GM 1.075 2.682 0.011 0.017
WM 0.133 0.398 0.060 0.086

Blood pool 10.661 12.237 0.101 0.101
Putamen 3.898 4.404 0.105 0.151
Caudate 5.386 5.474 0.067 0.103

Cerebellum 1.093 0.803 0.016 0.017
Fat/Muscle 0.232 0.946 0.007 0.008

as putamen and gray matter, respectively, that yielded to a large deviation from
the true activity values.

The total error in the image-based approach sums up from the following two
reasons: the errors coming from the image reconstruction and the errors coming
from the erroneous segmentation. We carried out two additional experiments to
separate the reconstruction errors and to evaluate their significance on TACs’
estimation. First, we excluded the segmentation errors by averaging the tissue-
TACs for each structure within the true ROIs. In the second experiment, we
generated the Poisson noise directly to the phantom data and estimated the
TACs within the delineated ROIs. No re-projection to the sinogram domain and
reconstruction were done, hence, the reconstruction errors were left out.

The results showed that the segmentation inaccuracies produce no significant
effect on the total RMSE. For certain structures the regional curves estimated
by averaging within the true ROI were even more biased than the ones averaged
within the erroneous ROI. For image-based method the reconstruction justified
to be the primary source of errors degrading accurate quantification of average
radioactivity within the ROI. Sinogram-based approach operating directly in the
projection space demonstrated very accurate extraction of TACs comparable to
the image-based estimation from the non-reconstructed phantom.

3.3 Effect of the Structure’s Size on TACs Estimation

The accuracy of TAC estimation depends largely upon the size of the ROI.
To quantify how does the image reconstruction affect the estimation error for
ROIs of different size we carried out the following experiment. A simple dynamic
cylindrical phantom with a single ROI was simulated from a fluorine 18F-labelled
tracer distribution. It consisted of 24 time frames of the size 64×64 voxels each.
The TAC for the cylinder ROI is depicted in figure 3. Further, we duplicated the
phantom six times decreasing the radius of the cylinder by a factor of two each
time in such a way that the ROI in the last cylinder shrank to a point source. The
noiseless phantoms were re-projected to the sinogram domain, and the Poisson
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Fig. 4. The impact of ROI’s size on the accuracy of TAC estimation for the sinogram
and image-based methods. Label 1 along the x-axis refers to the initial ROI size, label
7 to the point source.

noise was generated to the projection data. Given the true region-TAC and the
ROI segmentation for each cylinder, the activity curves were estimated from the
noisy sinogram data using (7). Image-based TAC extraction was accomplished
according to the procedure described in section 3.2.

The logarithmic dependence between the RMSE and the size of the ROI
is demonstrated in figure 4. The results showed that the estimation error in-
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creases for the ROIs of smaller size. For the image-based approach the accuracy
of calculated regional values was significantly worsened by the reconstruction
procedure.

4 Discussion

In kinetic modelling the goal of segmentation is to define ROIs for calculating
the mean radioactivity within them. These average TACs are further used to
estimate the kinetic rate constants of the compartmental model. We introduced
an algebraic deterministic model for segmenting the dynamic projection data.
Its main difference from the AR techniques used in image reconstruction is the
small size of system matrix. Hence, direct numerical approaches can be applied
to solve the set of simultaneous equations. For overdetermined noise-free system,
the least-squares estimates produce exact separation of dynamic sinogram into
constituent projected components.

We compared the image-based approach for extracting the average tissue TACs
from the noisy Poisson observations to the direct sinogram-based scheme. The
image-based method exhibited fairly poor performance even with the known true
ROI segmentation. The image reconstruction step was shown to be the main rea-
son for that. The sinogram-based method allowed producing more stable and ac-
curate results owing to the fact that ROIs were estimated from the projection data
which are free of reconstruction artifacts. The attractive feature of the sinogram-
based segmentation approach is its low computational demand. For a 4-D dataset
consisting of 128× 128× 63× 27 pixels the average time of segmentation was just
a few seconds on a computer with 2 GHz Pentium 4 processor.

A crucial issue in the dynamic projection imaging concerns the parameter es-
timation for the true TACs from the data. In the present study, the segmentation
problem was relaxed by assumption that the mean vector for each tissue-TAC
λk(t) is known beforehand. In practice this is not true, and the maximum likeli-
hood approach can be employed to develop an algorithm for learning parameters
λk(t) and bdk. We address this issue to our future work.

Another important fact that deserves a separate discussion is that the seg-
mented sinogram ROIs are not limited for use in the sinogram space only. In
general, reconstruction is possible and it yields the segmented ROIs in the image
space.

There is an interesting link to sinogram segmentation with independent com-
ponent analysis (ICA). In e.g. [16] authors modelled the dynamic sinogram as
a linear mixture of unknown sources to separate the functional components in
PET. In contrast to our approach, they imposed the deterministic nature on the
TACs zk(t) and the stochastic (non-Gaussian) nature on the columns of matrix
B. The major drawback of ICA separation is that it lacks the ability to find the
amplitude (scaling) of the estimated signals. Without knowing the exact quanti-
tative values, segmented ROIs in sinogram domain are useless for quantitation.
Therefore, the ICA-based separation can be found practical only in conjunction
with reconstructing the segmented sinogram ROIs to an image domain.
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5 Conclusion

A novel sinogram-based segmentation approach for dynamic emission tomog-
raphy data is introduced. It benefits the advantage of estimating the local ROI
values directly in sinogram space, thereby skipping the time consuming image re-
construction process which tends to introduce substantial errors and artifacts to
the reconstructed volumes. Using two computer-simulated phantoms we demon-
strated that the higher accuracy can be achieved for quantitative parameters
computed from raw data in comparison to the image-based segmentation.
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Abstract. We propose new techniques for unsupervised segmentation
of multi-modal grayscale images such that each region-of-interest relates
to a single dominant mode of the empirical marginal probability dis-
tribution of gray levels. We follow most conventional approaches such
that initial images and desired maps of regions are described by a joint
Markov–Gibbs random field (MGRF) model of independent image sig-
nals and interdependent region labels. But our focus is on more accurate
model identification. To better specify region borders, each empirical
distribution of image signals is precisely approximated by a linear com-
bination of Gaussians (LCG) with positive and negative components.
Initial segmentation based on the LCG-models is then iteratively refined
by using the MGRF with analytically estimated potentials. The conver-
gence of the overall segmentation algorithm at each stage is discussed.
Experiments with medical images show that the proposed segmentation
is more accurate than other known alternatives.

1 Introduction

Applications of vision-guided robotics, automatic navigation, and medical im-
age analysis need only fast and accurate special-purpose segmentations of
multi-model images.Therefore, the supervised general-purpose segmentation al-
gorithms based on training samples from previously segmented images [1,2,3,4]
are insufficient for these applications in terms of accuracy and computational
complexity; necessitating the use of unsupervised algorithms for multi-modal
images (see e.g. [5]).

The currently popular deformable model methods for the segmentation of
multi-modal images (see e.g. [6,7,8] to cite a few) also have some serious draw-
backs in practical applications, namely, the high computational complexity, lim-
ited capabilities in detecting boundaries with concavities, and typically manual
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initialization of an initial model within a desired object. Known automatic ini-
tialization schemes in [7,9] assume either a given approximate prototype of the
average region boundary to match to the image or only a specific uniform spatial
arrangement of signals in each region, respectively.

Although sometimes looking reasonably simple, the difficulty of the segmen-
tation of multi-model images arises due to the intermixing object boundaries. In
the mixed marginal frequency distribution of multi-modal images, each object
is related to individual modes (or dominant peaks) of the distribution. In the
case of dull edges, even if the dominant modes of an empirical signal mixture
are clearly separated, object boundaries may not be accurately detected because
of the intersecting tails of the adjacent objects in the signal mixture. Therefore,
for accurate segmentation of such images, not only the main body of each such
distribution but also its tails have to be precisely recovered from the mixture of
these distributions.

To bypass the aforementioned drawbacks of the current algorithms and to
overcome the intersecting tails problem, we revisit in this paper a more conven-
tional scheme of unsupervised segmentation of multi-modal images to show that
it is still highly competitive with more recent approaches. The scheme assumes
image signals are conditionally independent with different marginal probabil-
ity distributions for each object, recovers these latter from the mixed empirical
signal distribution collected over the image [10,11], and performs the initial seg-
mentation by the low-level pixel-wise classification. A region map obtained is
further refined by optimal statistical (Bayesian or maximum likelihood) esti-
mation of a hidden Markov–Gibbs random field (MGRF) model of regions. To
specify an iterative estimation process, both the images and region maps are
described with a joint two-level MGRF model that combines an unconditional
model of interdependent region labels at the higher level and a conditional model
of independent image signals in each region at the lower level (see, e.g. [12,13]).

Although this fast scheme is under development for a long time, all its con-
ventional implementations identify the lower-level model only very roughly by
assuming a normal density mixture with a single Gaussian per mode. Also, only
heuristically chosen Gibbs potentials are typically used to govern the higher-level
model. As a result, this scheme encounters difficulties in detecting practically
meaningful accurate boundaries between the objects. In contrast to other so-
lutions, we focus on most accurate identification of the low-level and high-level
probability models. For this purpose, we propose new efficient techniques for pre-
cise approximation of the marginal probability distributions of image signals for
each class (object) and precise approximation of Gibbs potentials for the region
model [13]. Because empirical signal distributions in each region have quite intri-
cate shapes, we represent in this paper each distribution including its tails with a
linear combination of Gaussians (LCG). Each linear combination has both posi-
tive and negative components and offers, under the same number of components,
much better approximation of empirical data than a conventional normal mixture
with only positive components. A mixed probability distribution for the whole
image is also an LCG combining the individual LCG models of each class.
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2 Joint MGRF Image and Region Model

Let Q = {0, . . . , Q − 1} and K = {1, . . . , K} denote sets of Q gray levels and
K region labels, respectively, K being the number of modes (classes) in the
mixed gray level distribution, e.g., K = 2 for a bimodal image. We assume each
dominant image mode relates to a particular object to be found in the image.

Let S = {(i, j) : 1 ≤ i ≤ I, 1 ≤ j ≤ J} be a finite arithmetic grid supporting
grayscale images Y : S → Q and their region maps X : S → K. A two-level
probability model of original images and their desired region maps is given by
a joint distribution P (Y,X) = P (X)P (Y|X) where P (X) is an unconditional
probability distribution of maps (the higher level) and P (Y|X) is a conditional
distribution of images, given the map (the lower level of the model).

The Bayesian maximum a posteriori (MAP) estimate X∗ =
argmaxX∈X L(Y,X) of the map X, given the image Y, maximizes the log-
likelihood function:

L(Y,X) =
1

|S| log P (Y|X) +
1

|S| log P (X) (1)

Here, X is the parent population of all K-label maps on S. To find the estimate
X∗, we need to identify parameters of the low- and high-level components of the
model. In accordance to the chosen conventional scheme, the low-level component
is an independent random field of gray levels Y = (Yi,j : (i, j) ∈ S) with different

distributions Pk =
(
p(q|k) : q ∈ Q;

∑
q∈Q p(q|k) = 1

)
for each object k ∈ K.

The conditional distributions Pk; k ∈ K, are the model parameters, and the joint
conditional distribution P (Y |X) of gray levels is: P (Y|X) =

∏
(i,j)∈S

p(Yi,j |Xi,j).

Let νX,Y(q, k) = |{(i, j) : (i, j) ∈ S; Xi,j = k; Yi,j = q}| ≡ αX(k)fX,Y(q|k)|S|
be the number of pixels with the gray value q in the class k. Here, αX(k) and
fX,Y(q|k) are the relative frequencies of the label k in the region map X and of
the gray value q in the image Y for the pixels of the class k, respectively. Then

P (Y|X) =
∏
k∈K

∏
q∈Q

[p(q|k)]αX(k)fX,Y(q|k)|S|

giving the first term of the log-likelihood in Eq. (1) as follows:

∑
k∈K

αX(k)

⎛⎝∑
q∈Q

fX,Y(q|k) log p(q|k)

⎞⎠ (2)

The high-level unconditional region map model is the simple MGRF with in-
terdependent pairs of region labels in the nearest 8-neighborhood of each pixel.
By symmetry considerations, the Gibbs potentials are independent of relative
orientations of pixel pairs, which are the same for all objects, and depend
only on whether the pairs of labels are equal or not. Under these simplifica-
tions, the model is closely similar to the conventional Potts (auto-binomial)
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MGRF [14,15,16] except that the Gibbs potentials have no pre-defined heuristic
functional form and are analytically estimated.

Let V = {V (k, κ) = γ if k = κ and V (k, κ) = −γ if k �= κ: k, κ ∈ K}
denotes the centered bi-valued Gibbs potential governing probabilities of sym-
metric pairwise co-occurrences of the region labels. Let the neighborhood N =
{(1, 0), (0, 1), (−1, 1), (1, 1)} specify the inter-pixel offsets for the 8-neighboring
pixel pairs. Let TN = {((i, j), (i+ ξ, j + η)) : (i, j) ∈ S; (i + ξ, j + η) ∈ S; (ξ, η) ∈
N} be a family (with cardinality |TN|) of the neighboring pixel pairs supporting
the Gibbs potentials. Let feq(X) denote the relative frequency of the equal labels
in the pixel pairs of that family in the map X:

feq(X) =
1

|TN|
∑

((i,j),(i+ξ,j+η))∈TN

δ(Xi,j − Xx+ξ,j+η)

where δ() is the Kronecker delta function: δ(0) = 1 and 0 otherwise. Then the
MGRF model of region maps is specified by the following Gibbs probability
distribution (GPD) where ZN is the normalizing factor (the partition function):

P (X) =
1

ZN
exp

⎛⎝ ∑
(i,j)∈S

∑
(ξ,η)∈N

V (Xi,j , Xi+ξ,j+η)

⎞⎠
=

1
ZN

exp (γ|TN|(2feq(X) − 1)) (3)

To identify this high-level model, we have to estimate only the potential value
γ. The close approximation of γ is easily obtained by expanding the second
likelihood term, 1

|S| log P (X), of Eq. (1) in the close vicinity of the zero potential,
γ = 0, into the truncated Taylor’s series. This expansion results in the following
approximate MLE of γ for a given map X:

γ =
K2

2(K − 1)

(
feq(X) − 1

K

)
(4)

specifying the potentials of the MGRF model for each current region map ob-
tained by Bayesian classification based on the previously identified low-level
conditional image model.

To actually compute the second likelihood term for the MAP segmentation,
we use the approximate partition function ZN given in [14] which is reduced in
our case to ZN ≈ exp (γ|TN|(2 − K)). Then

1
|S| log P (X) ≈ 4γ(2feq(X) + K − 3) (5)

3 Segmentation Framework

The log-likelihood of Eq. (1) is a complex multi-modal function of the region map
X. To approach the desired MAP estimate X∗, we follow a conventional two-
stage framework [12,13] but with far more accurate model identification than
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in other known algorithms due to the use of the LCG and precise parameter
estimates of the LCG and the MGRF.

Initialization: A close initial approximation X∗
[0] of the desired region map

by the precise unsupervised estimation of the marginal distributions Pk for
each object k ∈ K (Section 4) and the subsequent Bayesian pixel-wise clas-
sification. Only the number K of dominant modes is specified by the user
and holds during the whole process.

Refinement: An iterative search for a local maximum of the log-likelihood in
Eq. (1) which is the closest to the initial approximation refines the initial
map. Each iteration involves the following steps:
1. The MGRF region map model, updated by estimating analytically the

potential γ in line with Eq. (4), is used together with the image model
to refine the current map by stochastic relaxation.

2. The current low-level image model, given the region map, is refined by
re-collecting the empirical gray level distributions for the classes and re-
approximating the distributions with the LCG in order to update the
map using the pixel-wise Bayesian classification.

At each step the approximate log-likelihood of Eq. (1) with the terms of Eqs. (2)
and (5) is greater than or at least equal to its previous value, so that the proposed
algorithm converges to a local maximum of this criterion.

4 Identification of the Low-Level Model

To most accurately identify the model, we approximate the marginal gray level
probability density in each region with a LCG having Cp,k positive and Cn,k

negative components:

p(q|k) =
Cp,k∑
r=1

wp,k,rϕ(q|θp,k,r) −
Cn,k∑
l=1

wn,k,lϕ(q|θn,k,l); (6)

such that
∫∞
−∞ p(q|k)dq = 1. Here, q is the gray level, ϕ(q|θ) is a Gaussian

density having a shorthand notation θ = (µ, σ2) for its mean, µ, and variance,
σ2. In contrast to more conventional normal mixture models, the components
are now both positive and negative and have only one obvious restriction in line
with Eq. (6):

∑Cp,k

r=1 wp,k,r − ∑Cn,k

l=1 wn,k,l = 1. These weights are not the prior
probabilities, and the LCG of Eq. (6) is considered simply as a functional form
of the approximation of a probability density depending on parameters (w, θ) of
each component.

In the general case, the actual probability densities belong to a proper subset
of the set of all possible LCGs of Eq. (6). In the subset, the weights and parame-
ters of the Gaussians are limited to keeping non-negative values of the combined
densities over the whole infinite signal range. The latter restriction is impracti-
cable because it results in strongly interdependent parameters. Nonetheless, in
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our particular case the interdependence may be ignored. We use the LCG model
to better approximate the main bodies as well as the intersecting tails of empir-
ical distributions within a finite and relatively small actual signal range [0, Q].
Thus, the model behavior outside the range and the associated restrictions on
the model parameters are of no concern. Moreover, the likelihood maximization
is also directed towards keeping the probability densities positive at points where
they approximate the empirical positive values.

The mixture of K LCGs, p(q) =
∑K

k=1 wkp(q|k), has just the same form
but with a larger number of the components, e.g., Cp =

∑K
k=1 Cp,k and Cn =∑K

k=1 Cn,k if all the values θp,k,r and θn,k,l differ for the individual models:

p(q) =
Cp∑
r=1

wp,rϕ(q|θp,r) −
Cn∑
l=1

wn,lϕ(q|θn,l) (7)

To identify this model in the unsupervised mode, the mixed empirical distri-
bution of gray levels over the image has to be first represented by a joint
LCG of Eq. (7) and then partitioned into individual LCG-models for each class
k = 1, . . . , K.

Under the fixed number of positive and negative components, C, the model
parameters w = {wc; c = 1, . . . , C} and Θ = {θc : c = 1, . . . , C} maximizing the
image likelihood can be found using a modified EM algorithm. It modifies the
conventional EM-scheme to take into account the components with alternating
signs, for more details see [13].

The modified EM algorithm is sensitive to its initial state specified by the
numbers of positive and negative Gaussians and the initial parameters (mean
and variance) of each component. To find a close initial LCG-approximation of
the empirical distribution, we used the sequential EM algorithm which proposed
in [13].

5 Step-Wise Segmentation Framework

Step-by-step implementation of the proposed segmentation algorithm is as fol-
lows.

1. Find the empirical probability distribution F by normalizing the gray level
histogram for a given image Y.

2. Use the sequential EM algorithm to initially estimate the numbers and pa-
rameters (means, variances, and weights) of the positive and negative Gaus-
sians in the LCG-model.

3. Use the modified EM algorithm to refine the estimated model parameters,
and estimate the marginal density for each class.

4. Form the initial region map X by pixel-wise Bayesian classification using the
obtained class models.

5. Estimate the potential (γ) for the Potts model using Eq. (4).
6. Improve the region map X using pixel-wise stochastic relaxation (Metropolis

sampler).
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7. Calculate the log-likelihood function of Eq. (1).
8. Repeat Steps 3–8 iteratively until the log-likelihood remains almost the same

for two successive iterations.
9. Output the final region map X.

6 Experimental Results

We illustrate the performance of the proposed techniques by the example of
a medical screening of low dose computer tomographic (LDCT) chest images.
The segmentation separates lung tissues from the surrounding anatomical struc-
tures such as chest tissues, ribs, and liver so that each LDCT slice has only
two dominant objects (K = 2): the darker lungs and the brighter background.
The lungs have to be accurately separated in such a way that their bound-
aries closely approach those outlined by a radiologist. Because of grayness some
lung tissues (such as arteries, veins, bronchi, and bronchioles) are very close
to the chest tissues, the segmentation cannot be based on only image signals
but have to also account for spatial relationships between the region labels in
order to preserve the details. Figure 1 demonstrates the typical LDCT chest
slice, its empirical gray level density, and the initial mixture of two Gaussians
approximating the dominant modes. The Levy distance 0.09 between these two
distributions indicates a notable mismatch [17]. Figure 2 illustrates the sequen-
tial EM-based initialization that estimates ten subordinate Gaussians giving the
minimum approximation error and shows the initial estimated LCG-model after
the subordinate positive and negative components are added to and subtracted
from the dominant mixture, respectively.

Figure 3 represents the final LCG-model and its 12 components obtained by
refining the initial model in Fig. 2 by the modified EM-algorithm as well as the
successive changes of the log-likelihood at the refining iterations. The first five
iterations of the modified EM-algorithm increases the log-likelihood from −5 to
−4.2. Then the iterations are terminated since the log-likelihood begins to very
slightly decrease (presumably, because of accumulated numerical errors). The
resulting Levy distance of 0.02 is much smaller than using the dominant mixture
only. The minimum classification error of 0.004 between the lung and background
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Fig. 1. Typical chest slice from a spiral LDCT scan (a) and its empirical signal distri-
bution F approximated with the dominant mixture P2
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Fig. 2. Deviation and absolute deviation (a) between the empirical F and dominant P2

mixtures; the error (b) of approximating the scaled absolute deviation as a function of
the number of the subordinate components; the best subordinate mixture (c) estimated
for the absolute deviation, and the empirical vs. the estimated distributions for the CT
slice in Fig. 1(a) with the 12-component LCG
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Fig. 3. Final LCG-approximation (a) of the bi-modal distribution; the components of
the final LCG (b), and the LCG-models of objects for the best separation threshold
t = 109 (c)

tissues for the final LCG-model is obtained with the threshold t = 109. In this
case the LCG-components 1–4 correspond to the the lung tissues and 5–10 to
the background ones.

The starting region map obtained by the pixel-wise classification in line with
the LCG-models is further refined using the iterative algorithm in Section 3.
Changes in the likelihood L(Y,X) become very small after 12 iterations as
shown in Fig. 4. The initial and final potential estimates for the map model
are γ = 1.01 and 1.30, respectively. The final region map produced with the
estimated potential and model parameters using stochastic relaxation is shown
in Fig. 4. For comparison, we also represent in Fig. 4 the initial region map, and
the final map but refined with the randomly (heuristically) selected potential,
the segmentation obtained by the MRS algorithm [19], and the “ground truth”
outlined by a radiologist. The final refinement involving the whole MGRF model
gives only a minor accuracy improvement so that the large errors in the initial
region map after using a conventional mixture of positive Gaussians to model
the empirical distribution cannot be eliminated.
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Fig. 4. Initial low-level segmentation (a); the final lung regions with the error of 0.85%
(b); the lung regions (c) obtained with the randomly chosen high-level parameter (the
error of 1.86%); the segmentation by the MRS algorithm (d) with the potential values
0.3 and three levels of resolution (the error of 2.3%); the lung regions segmented by a
radiologist (e), and the convergence of the proposed algorithm (the errors with respect
to the ground truth are highlighted by yellow color)

Error = 0.96 Error = 3.01
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Fig. 5. Original CT slices (a); our lungs segmentation (b) with errors only around the
outer boundary; the segmentation by the IT algorithm in [18] (c), and the ground truth
(d) given by a radiologist (the errors are highlighted by yellow color)
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Figure 5 compares our segmentation to iterative thresholding (IT) proposed
in [18]. In contrast to this method, our segmentation does not lose abnormal lung
tissues. In all our experiments, segmentation errors are evaluated by comparing
to the “ground truth” map produced by an expert. More segmentation results
for lung tissues are shown in Fig. 6.

To show that the proposed approach is not limited to segment lung tissues
from LDCT images, we applied the proposed segmentation techniques on two
more different types of medical images. These two types are axial human head

Fig. 6. 3D segmentation results of lung tissues from LDCT images

Fig. 7. 3D segmentation results of blood vessels from MRA images

Fig. 8. 3D segmentation results of white matter from MRI images
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slices obtained by time-of-flight magnetic resonance angiography (TOF-MRA),
and axial human head slices obtained by magnetic resonance imaging (MRI).
These images were acquired with the Picker 1.5T Edge MRI scanner. The TOF-
MRA 512× 512 and MRI 256× 256 slices were 1.5 mm thick. The segmentation
results for both MRA and MRI images are shown in Fig. 7 and Fig. 8

7 Concluding Remarks

Our experiments show that the precise identification of a simple conventional
MGRF-model boosts considerably its descriptive capabilities and demonstrates
promising results in the unsupervised segmentation of multi-modal images. The
main difference with respect to more conventional schemes is in the use of precise
LCG-models to approximate mixed signal distributions and accurate analytical
estimation of Gibbs potentials.

In our future work, we are going to additionally estimate the number of the
dominant modes, in order to obtain a totally autonomous unsupervised segmen-
tation framework.

By accuracy, our final region maps are considerably closer to the ground truth
than the maps produced by other known segmentation algorithms including the
deformable model based ones. Therefore, the more precise LCG-based approx-
imation of distributions and more accurate parameter estimates make the fast
unsupervised segmentation based on a simple two-level MGRF model quite com-
petitive to today’s more elaborative alternatives in some important applied areas
of image analysis.
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Abstract. This paper presents an integrated algorithm for MRI (Magnetic 
Resonance Imaging) brain tissues segmentation. The method is composed of 
four stages. Noise in the MRI images is first reduced by a versatile wavelet-
based filter. Then, the watershed algorithm is applied to brain tissues as an ini-
tial segmenting method. Because the result of classical watershed algorithm on 
grey-scale textured images such as tissue images is over-segmentation. The 
third stage is a merging process for the over-segmentation regions using fuzzy 
clustering algorithm (Fuzzy C-Means). But there are still some regions which 
are not divided completely due to the low contrast in them, particularly in the 
transitional regions of gray matter and white matter, or cerebrospinal fluid and 
gray matter. We exploited a method base on Minimum Covariance Determinant 
(MCD) estimator to detect the regions needed segmentation again, and then par-
tition them by a supervised k-Nearest Neighbor (kNN) classifier. This inte-
grated approach yields a robust and precise segmentation. The efficacy of the 
proposed algorithm is validated using extensive experiments. 

1   Introduction 

Many issues inherent to medical image make segmentation a difficult task. The 
objects to be segmented from medical image are true (rather than approximate) 
anatomical structures, which are often non-rigid and complex in shape, and exhibit 
considerable variability from person to person. Moreover, there are no explicit shape 
models yet available for capturing fully the deformations in anatomy. MRI produces 
high contrast between soft tissues, and is therefore useful for detecting anatomy in the 
brain. Segmentation of brain tissues in MRI images plays a crucial role in three-
dimensional (3-D) volume visualization, quantitative morphmetric analysis and 
structure-function mapping for both scientific and clinical investigations. 

Because of the advantages of MRI over other diagnostic imaging [2], the majority 
of researches in medical image segmentation pertains to its use for MR images, and 
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there are a lot of methods available for MRI image segmentation [1-12]. Niessen et al. 
roughly grouped these methods into three main categories: classification methods, 
region-based methods and boundary-based methods. Just as pointed out in [12], the 
methods in the first two categories are limited by the difficulties due to intensity in-
homogeneities, partial volume effects and susceptibility artifacts, while those in the 
last category suffer from spurious edges.  

In this paper we address the segmentation problem in the context of isolating the 
brain in MRI images. An integrated method using an adaptive segmentation of brain 
tissues in MRI images is proposed in this paper. Firstly, we de-noise the images using 
a versatile wavelet-based filter. Subsequently, watershed algorithm is applied to the 
brain partition as an initial segmenting method. Normally, result of classical water-
shed algorithm on grey-scale textured images such as tissue images is over seg-
mented. The following procedure is a merging process for the over segmented regions 
using fuzzy clustering algorithm (here, we take Fuzzy C-Means). But there are still 
some regions which are not divided completely, particularly in the transitional regions 
of gray matter and white matter, or cerebrospinal fluid and gray matter. This moti-
vated the construction of a re-segmentation processing approach to partition these 
regions. We exploited a method base on Minimum Covariance Determinant (MCD) 
estimator to detect the regions needed segmentation again, and then partition them by 
a supervised k-Nearest Neighbor (kNN) classifier. 

The rest of this paper is organized as follows. In Section 2, we present the versatile 
wavelet-based de-noising algorithm. Watershed algorithm is briefed in Section 3. In 
Section 4, we describe the merging process using region-based Fuzzy C-Means 
(RFCM) clustering. Section 5 presents the proposed a re-segmentation processing 
approach based on the combination of MCD and kNN. Experimental results are pre-
sented in Section 6 and we conclude this paper in Section 7. 

2   Wavelet-Based De-noising 

The noise type in the MRI magnitude images is Rician, having a signal-dependent 
mean, and the Rician distribution approaches a Gaussian distribution when the SNR is 
high [15]. In medical images, noise suppression is a particularly delicate and difficult 
task. A trade off between noise reduction and the preservation of actual image fea-
tures has to be made in a way that enhances the diagnostically relevant image content. 
To achieve a good performance in this respect, a de-noising algorithm has to adapt to 
image discontinuities. The wavelet representation naturally facilitates the construction 
of such spatially adaptive algorithms.  

A versatile and spatially adaptive wavelet-based de-noising algorithm [15] is 
applied in this paper. The algorithm exploits generally valid knowledge about the 
correlation of significant image features across the resolution scales to perform a 
preliminary coefficient classification. This preliminary coefficient classification is 
used to empirically estimate the statistical distributions of the coefficients that 
represent useful image features on the one hand and mainly noise on the other. The 
adaptation to the spatial context in the image is achieved by using a wavelet domain 
indicator of the local spatial activity. This robust method adapts itself to various types 
of image noise as well as to the preference of the medical expert. Fig. 1(a) shows an 
MRI image simulated from a normal brain phantom [16] with 3% noise level, and 
Fig. 1(b) shows the corresponding wavelet-based de-noising result. 
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             (a)                                (b)                           (c)                             (d) 

Fig. 1. (a) Original image simulated from MRI brain phantom with 3% noise level, and its 
processed versions with (b) wavelet-based de-noising. (c) Partition result after using watershed 
algorithm. (b) Some regions that aren’t divided completely. 

3   Watershed Algorithm 

The input to watershed algorithm is a gray-scale gradient image. Sobel edge detection 
is applied to get this gradient magnitude image, denoted by

GI . The gradient image is 
considered as a topographic relief. We apply the Vincent and Soille [13] version of 
watershed algorithm, which is based on immersion simulation: the topographic sur-
face is immersed from its lowest altitude until water reaches all pixels. The output of 
watershed algorithm is segmentation of MRI into a set of non-overlapping regions 
[14]. Fig. 2c demonstrates the watershed result of the image shown in Fig. 1b. 

The watershed transformation constitutes one of the most powerful segmentation 
tools provided by mathematical morphology. But there are two disadvantages in the 
watershed algorithm. Firstly, result of classical watershed algorithm on grey images 
such as tissue images is over-segmentation, as shown in Fig. 1c. Secondly, there are 
some regions which are not divided completely particularly in the transitional regions 
of gray matter and white matter, or cerebrospinal fluid and gray matter. It is clearly 
shown in Fig. 1d obtained from one part of Fig. 1c zoomed in. In Section 4 and Sec-
tion 5, we will focus our attentions on these questions respectively. 

4   Merging the Over-Segmentation Regions 

After watershed algorithm being used, there are too many regions because of natural 
attribute of watershed algorithm -- over segmentation. To overcome this problem, we 
proposed a region-based FCM (RFCM) clustering method to merge these regions over 
segmented in this section. 

FCM has been applied widely to MRI segmentation [6-9], and regarded as one of 
the most promising methods [7]. The FCM clustering algorithm assigns a fuzzy mem-
bership value to each data point based on its proximity to the cluster centroids in the 
feature space. In our work, the output of watershed algorithm is the segmentation of 

GI  into a set of non-overlapping regions denoted by
iR , ni ..., ,2 ,1=  where n  is the 

number of regions. To implement the merging of similar regions, we use the region 
based FCM (RFCM) clustering method. The mean value, denoted by nimi  ..., ,2 ,1, =  
of each region

iR , is needed. 
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The RFCM clustering algorithm in this paper is formulated as: 
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where the matrix }{ ikuU =  is a fuzzy c-partition of 
GI , and 

iku  gives the membership 
of region 

iR  in the k th cluster 
kc  , c  is the total number of clusters and set to 3 in 

our study, because three brain tissues are of interest: CSF (Cerebrospinal Fluid), GM 
(Gray Matter), and WM (White Matter), },,{ 321 vvvv =  is the set of fuzzy cluster 
centroids, and 

321  , , vvv  denote the centroids of CSF, GM and WM respectively, 
) ,1( ∞∈m  is the fuzzy index (in our study, 2=m ).  

If the difference of intensity mean value of region 
iR  and 

kv  is small enough, region 

iR  will be assigned to a high membership value for the k th cluster
kc . Let the first 

derivatives of 
RFCMJ  with respect to u and v  equal to zero yields the two necessary 

conditions for minimizing
RFCMJ . The RFCM algorithm is implemented by iterating the 

two necessary conditions until a solution is reached. After RFCM clustering, each 
region will be associated with a membership value for each class. By assigning the 
region to the class with the highest membership value, a segmentation of the region can 
be obtained. 

The result image after merging the over segmentation regions using RFCM on Fig. 
1c is shown in Fig. 2a. We can see the result of some regions which are not partitioned 
completely obviously in Fig. 2b obtained from a part of the image after Fig. 2a zoomed 
in. Fig. 2c and d are images after watershed lines removed from Fig. 2a and b respec-
tively. From these images (see Fig. 2), another disadvantage of the watershed algo-
rithm – segmentation incompletely and inaccurately in some regions is shown clearly. 

                  
             (a)                               (b)                           (c)                           (d)    

Fig. 2. (a) Image after using RFCM. (b) A partial image of (a) zoomed in. (c) and (d) are im-
ages after watershed lines removed from (a), (b) respectively. 

5   The Re-segmentation Processing 

Though the image is partitioned into too many regions after the operation of water-
shed algorithm, there are still some regions which have not been separated completely 
and accurately, particularly in the transitional regions of gray matter and white matter, 
or cerebrospinal fluid and gray matter. Therefore, this motivate the construction of a 
re-segmentation processing method to partition these regions in this section, which is 
based on the combination of MCD and kNN. 
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5.1   Searching for the Re-segmentation Regions  

As we known, the attribute of transitional regions partitioned incompletely after 
watershed segmentation is different from that of interior regions of the brain tissues. 
Now, if the variance of the region 

iR  is small enough, the region 
iR  is homogene-

ous. Otherwise, region 
iR  may be inhomogeneous and would be partitioned again. 

Moreover, if the result after watershed segmentation is complete and accurate, the 
region’s mean value would be close to the centroid of the class it belongs to. While 
region’s mean value is far from the centroid of the class it belongs to, this region 
may be inhomogeneous. Thus, the feature vector is constructed by the mean value 
and variance of each region. In Fig. 3a, the horizontal axis represents the mean of 
each region, the vertical axis represents the variance of each region, and the sam-
ples are obtained by RFCM clustering result. The dots which are far from the  
centroids of brain tissues they belong to may be the regions needed re-segmentation 
in Fig. 3a. 

For detecting the transitional regions which are not divided completely, the  
Minimum Covariance Determinant (MCD) estimator is exploited in our study. It is 
defined to be the mean and covariance of an ellipsoid covering at least half of the data 
with the lowest determinant of covariance. This method is highly robust, with a high 
breakdown point. The breakdown point is the fraction of the data that must be moved 
to infinity so that the estimate also moves to infinity. The MCD estimate has a break-
down point of 0.5, more than half of the data needs to be contaminated to make the 
estimate be unreasonable.  

To speed up the MCD detection, a fast MCD algorithm proposed by Rousseeuw 
and Van Driessen [17] is used in this section. In Fig. 4, these outliers are just the 
transitional regions needed re-segmentation. Fig. 4a, b and c are the fast MCD detec-
tion results of CSF, GM and WM respectively. After removing the outlier dots from 
Fig. 3a, the inliers are left (Fig. 3b) which is the reliable and validity result of RFCM 
clustering. 

  
                                   (a)                                                                       (b) 

Fig. 3. The horizontal axis represents the mean of each region and the vertical axis represents 
the variance of each region after watershed segmentation. (a) Original samples obtained by 
RFCM clustering result (b) The samples after removing the outliers. 
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                     (a)                                         (b)                                         (c)  

Fig. 4. Fast MCD detection algorithm. (a), (b) and (c) are the detection results of CSF, GM and 
WM respectively. 

The MCD estimator not only can detects the re-segmented regions, but also the 
inliers of the region class samples can be used as training set for the next k-Nearest 
Neighbor classification. 

5.2   Re-segmentation Using kNN 

In this section, we exploited a supervised classifier, the classical k nearest-neighbor 
(kNN) classifier [18], to partition the regions needed re-segmentation. We choose the 
means of inlier’s regions obtained from fast MCD estimator as the training set. For 
each data point to be classified in re-segmented regions, kNN compute this point's 
closest k training samples in feature space. Then the data is classified with the label 
most represented among these k nearest neighbors. kNN is attractive because it is a 
non-parametric classifier, and it can learn from the training set. 

According to the suggestion which Enas and Choi given in [19], we choose k = 7 
in the experiments presented in this paper, and our implementation uses a fast nearest 
neighbor lookup library [22] which pre-processes using box-decomposition trees to 
reduce the computation of kNN algorithm. 

To illustrate our re-segmentation approach, the re-segmentation result operating on 
Fig. 2a is shown in Fig. 5a, and Fig. 5b is its result image without watershed lines. 
Fig. 5c is a part of image after Fig. 5a zoomed in, and the same part image of Fig. 5b 
zoomed in is shown in Fig. 5d. Compared this result (Fig. 5c and d) with watershed 
segmentation result in Fig. 1d, the precise and veracity of our method is obviously 
validated.  

                 
             (a)                               (b)                           (c)                           (d) 

Fig. 5. (a) Re-segmented result image using our method. (b) Finial result image without water-
shed lines. (c) and (d) are the same part of (a) and (c) zoomed in respectively. 
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6   Experimental Results  

The proposed algorithm was implemented in Matlab and tested on both simulated MRI 
images obtained from the BrainWeb Simulated Brain Database at the McConnell Brain 
Imaging Centre of the Montreal Neurological Institute (MNI), McGill University [16], 
and on real MRI data obtained from the Internet Brain Segmentation Repository (IBSR) 
[20]. Extra-cranial tissues are removed from all images prior to segmentation. 

6.1   Results Analysis and Comparison                                                                                          

Figure. 6a is a part of the image which is obtained from the partition result after using 
watershed algorithm (Fig. 1c) zoomed in, and it is clearly shown that some regions 
are partitioned incompletely after the operation of watershed algorithm. This disad-
vantage of watershed algorithm is obviously shown in Fig. 6b obtained from a part of 
RFCM clustering result (Fig. 2a) zoomed in. Using our novel re-segmentation ap-
proach, the regions partitioned incompletely are divided again, and the result image is 
shown in Fig. 6c. Fig. 6d, e and f are images with watershed lines removed from Fig. 
6a, b and c respectively. Compared this result (Fig. 6c) with watershed segmentation 
result in Fig. 6a, the precise and veracity of our method is obviously validated. 

In following, we compare the segmentation results among FCM clustering, seg-
mented result using our proposed approach and the “ground truth” in Fig. 7b, c and d. 
The original image is shown in Fig. 1a and Fig. 7a is the wavelet-based de-noising 
image. FCM clustering result (Fig. 7b) is partitioned inaccurately, particularly in the 
transitional regions of gray matter and white matter, or cerebrospinal fluid and gray  
 

                                 
              (a)                                            (b)                                        (c) 

                                  
                           (d)                                           (e)                                          (f) 

Fig. 6. (a) A part of the partition image after using watershed algorithm (Fig. 1c) zoomed in. (b) 
Same part of RFCM clustering result (Fig. 2a) zoomed in. (c) Same part of the image after re-
segmentation with our proposed approach (Fig. 5a) zoomed in. (d), (e) and (f) are images with 
watershed lines removed from (a), (b) and (c) respectively. 
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               (a)                             (b)                             (c)                             (d) 

Fig. 7. (a) Wavelet-based de-noising image. (b) FCM segmentation. (c) Segmented result using 
our proposed approach. (d) Ground truth. 

matter. The segmented result using our approach (Fig. 7c) clearly outperforms the 
result of FCM clustering (Fig. 7b).   

Three different indices (false positive ratio
fpγ , false negative ratio

fnγ , and simi-
larity index ρ [21]) are exploited for each of three brain tissues as quantitative meas-
ures to compare our method and FCM clustering with the “ground truth”. The results 
are shown in Table 1. Our integrated scheme produces a more robust segmentation 
result than FCM.  

Table 1. Comparing our method and FCM clustering with the ground truth 

FCM clustering Our proposed approach  

fpγ          
fnγ          ρ  

fpγ         
fnγ           ρ  

WM 10.12         7.24       91.44 2.36        6.25        95.01 
GM 13.44       12.69       86.98 1.99        8.01        93.25 
CSF 6.48       16.10       83.19 5.29       5.18        92.10 

6.2   Quantitative Validation 

To quantitatively validate our method, test images with known “ground truth” are 
required. For this purpose, we used the simulated MRI images from a normal brain 
phantom [16] with T1-weighted sequences, slice thickness of 1 mm, volume size of 
21����������and noise levels of 3%, 5%, 7% and 9% respectively. Background 
pixels are ignored in our experiment, thus the brain of interest consisting of CSF, GM 
and WM is extracted and then segmented by our proposed method. 

Fig. 8a, d, g and j are simulated MRI images with noise levels of 3%, 5%, 7%, 
and 9% respectively. The corresponding segmentation results processed by our 
approach are shown in Fig. 8b, e, h and k with their “ground truth” of Fig. 8c, f, i 
and l respectively.  

For validating the accuracy and reliability of our method, we also use the three dif-
ferent indices (false positive ratio

fpγ , false negative ratio
fnγ , and similarity index 

ρ [21]) for each of three brain tissues as quantitative measures. The validation results 

are shown in Table 2. The similarity index %70>ρ  indicates an excellent similarity 

[21]. In our experiments, the similarity indices ρ  of all the tissues are larger than 90% 
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even for a bad condition with 9% noise level, which indicates an excellent agreement 
between our segmentation results and the “ground truth”. 

      
              (a)                     (b)                     (c)                     (d)                     (e)                    (f) 

      
          (g)                     (h)                    (i)                     (j)                     (k)                     (l) 

Fig. 8. Segmentation of simulated image from MRI brain phantom. (a), (d), (g) and (j) are 
images with the noise levels of 3%, 5%, 7% and 9% respectively, with (b), (e), (h) and (k) their 
corresponding segmentation results using our proposed approach. (c), (f), (i) and (l) are the 
“ground truth” of (a), (d), (g) and (j) respectively. 

Table 2. Validation results for different noise levels  

3%   noise 5%   noise 7%  noise 9% noise  

fpγ     
fnγ     ρ  

fpγ      
fnγ     ρ  

fpγ       
fnγ     ρ   

fpγ       
fnγ       ρ  

WM 1.94  6.37  95.44 2.36  7.25  95.01 2.70    7.62  94.13 3.18   9.81  93.27 
GM 1.47  8.59  94.27 1.99  9.01  93.25 2.42  10.31  92.95 3.03 12.20  91.32 
CSF 6.12  6.10  92.48 6.29  6.18  92.10 7.45    6.98  91.86 10.63  9.15  90.15 

6.3   Performance on Actual MRI Data 

Fig. 9a shows one slice of real T1-weighted MRI images [17]. Fig. 9b is FCM seg-
mentation result. Using our re-segmentation processing, the result image is shown in 
Fig. 9c. Visual inspection shows that our approach produces better segmentation than 
FCM, especially in the transitional regions of gray matter and white matter, or cere-
brospinal fluid and gray matter. 

                  
                (a)                                     (b)                                     (c) 

Fig. 9. Segmentation of real MRI image. (a) Original image. (b) FCM segmentation. (c) Re-
segmented result using our approach. 
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7   Conclusions 

We propose a novel approach for segmenting brain tissues in MRI images, which is 
based on the combination of wavelet-based de-noising, watershed algorithm, RFCM 
and a re-segmentation processing approach. As a result, the quality of the segmenta-
tion is improved. The algorithm is composed of four stages. In the first stage, we de-
noise the images using a versatile wavelet-based filter. Subsequently, watershed algo-
rithm is applied to brain tissues as an initial segmenting method. Normally, result of 
classical watershed algorithm on grey-scale textured images such as tissue images is 
over-segmentation. The following procedure is a merging process for the over seg-
mentation regions using RFCM. But there are still some regions which are not parti-
tioned completely, particularly in the transitional regions of gray matter and white 
matter, or cerebrospinal fluid and gray matter. This motivated the construction of a  
re-segmentation processing approach to partition these regions. We exploited a 
method base on Minimum Covariance Determinant (MCD) estimator to detect the 
regions needed segmentation again, and then partition them by a supervised k-Nearest 
Neighbor (kNN) classifier. This integrated scheme yields a robust and precise  
segmentation.  
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Abstract. Fluorescent confocal laser scanning microscope (CLSM) imaging has 
become popular in medical domain for the purpose of 3D information extrac-
tion. 3D information is extracted either by visual inspection or by automated 
techniques. Nonetheless, 3D information extraction from CLSM suffers from 
significant lateral intensity heterogeneity. We propose a novel lateral intensity 
heterogeneity correction technique to improve accurate image analysis, e.g., 
quantitative analysis, segmentation, or visualization. The proposed technique is 
novel in terms of its design (spatially adaptive mean-weight filtering) and appli-
cation (CLSM), as well as its properties and full automation. The key properties 
of the intensity correction techniques include adjustment of intensity heteroge-
neity, preservation of fine structural details, and enhancement of image contrast. 
The full automation is achieved by data-driven parameter optimization and in-
troduction of several evaluation metrics. We evaluated the performance by 
comparing with three other techniques, four quality metrics, and two realistic 
synthetic images and one real CLSM image. 

1   Introduction 

Visual inspection of medical specimens is one of the most common techniques in a 
medical domain used for diagnosis. Based on the need to investigate specimen charac-
teristics at high spatial resolution, fluorescent Confocal Laser Scanning Microscopy 
(CLSM) imaging is frequently used for obtaining images of cross sections. Unfortu-
nately, the intensity information often is distorted due to multiple specimen prepara-
tion and image acquisition limitations. Thus, there is a need to investigate techniques 
for fluorescent CLSM image intensity adjustment to support visual inspection tasks. 
Our work is primarily intended to support visual inspection of 3D volumes in virtual 
reality environments [1] to be quantitatively analyzed and correlated with information 
from other sensors. Nevertheless, it is well recognized that spatial intensity heteroge-
neity is a major barrier in acquiring reliable results during the above analyses [2],[3].  

There are several known factors that cause spatial intensity heterogeneity, such as 
photo-bleaching, fluorescent attenuation along confocal (depth) axis, image acquisi-
tion factors [2],[4], variations of illumination exposure rate, spatially uneven distribu-
tion of dye and the spatial characteristics of illumination beams [5], and fluorochrome 
micro-environment, e.g., pH, temperature, embedding medium, etc [6]. However, it is 
infeasible to monitor all exact states of a fluorescent dye in an imaged specimen at a 
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pixel resolution. Thus, it is very hard to develop an intensity heterogeneity correction 
method that would be directly linked to the sources of intensity heterogeneity coming 
from specimen preparation and image acquisition steps.  

In past, intensity correction has been performed based on empirical correction 
methods for intensity loss [7], constant thresholding [8], iterative correction methods 
[9], 2D histogram [10], or estimations of intensity decay function [11]. However, 
most of these methods assume that the rate of photo-bleaching is spatially homogene-
ous in a lateral plane, can be characterized by an exponential function in depth [4], 
and mainly contributes to intensity loss along the specimen depth axis (z-axis) [12]. 
Nonetheless, these assumptions do not hold in a general case.  

To solve the intensity correction problem in a lateral (x-y) plane, Histogram 
Equalization (HE) has been used in early applications [13], which leads to a uniform 
global intensity distribution in output image. However, it cannot effectively enhance 
local intensity variation due to its global property. To address this problem, Adaptive 
Histogram Equalization (AHE) has been used to adjust intensity variation locally by 
computing local histograms within spatially different windows [14]. A major problem 
of AHE is high sensitivity to noise, which results in amplification of undesired noise 
values. An improved approach to adjust local intensity variation is the Contrast Limit-
ing Adaptive Histogram Equalization (CLAHE) [15]. It reduces noise amplification 
due to AHE by setting clipping limits and so removes boundary artifacts by back-
ground subtraction. Nevertheless, the main drawbacks of CLAHE are; (1) the parame-
ters need to be manually selected. (2) There could be loss of fine details caused by in-
tensity saturation. Alternatively, a model based approach is proposed by applying a 
bias field, e.g., intensity distortion map, to a polynomial function which is defined in 
prior [16]. However, this method requires prior knowledge about images, e.g., the de-
gree of a polynomial function, and the computational complexity tends to increase 
exponentially upon the degree of a polynomial function. 

In this work, we propose an intensity correction technique with data-driven pa-
rameter selection. The technique, we call mean-weight filtering, adjusts intensity het-
erogeneity in x-y plane, preserves fine structural details, and enhances image contrast 
by performing spatially adaptive filtering, which is understood as highly salient in 3D 
visualization environment when examined by medical experts [1]. Although the inten-
sity heterogeneity correction problem may be viewed as a restoration problem, we  
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Fig. 1. Intensity Correction Problem: (left) measured intensity profile for CLSM images with 
intensity bias (solid curve) and (right) corrected intensity profile. Intensity bias has been cor-
rected while preserving local intensity gradients. 
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formulate the problem as an optimization problem since it is impossible to obtain the 
true uncorrupted intensity values for comparative purposes. Thus, we formulate the 
intensity heterogeneity correction problem as a search for an optimal, spatially adap-
tive, intensity transformation that maximizes intensity contrast with respect to back-
ground, minimizes overall spatial intensity variation for large area, e.g., low fre-
quency domain, and minimizes distortion of intensity gradient for local features, e.g., 
high frequency domain, as shown in Fig. 1. We assume that the input image contains 
a single band (or a grayscale image) with spatially varying intensities. 

2   Mean Weight Filtering 

Our approach combines a kernel-based spatial filtering, and incorporates local and 
global image intensity analysis. The proposed intensity correction process consists of 
determining the background threshold intensity, optimizing the kernel size, construct-
ing a set of 2D intensity correction maps for the volume, multiplying the intensity cor-
rection maps to the frames, and removing outlier pixels (speckle noise) from the cor-
rected images based on statistical value ranges.  

2D filter model: An image filtering approach to the presented intensity correction 
problem can be described as: 

[ , ] [ , ]( , ) ( , ) ( , )a b a bg x y I x y w x y= ⋅  (1) 

where [ , ] ( , )a bg x y  and ( , )I x y  are the output and input pixel values at ( , )x y  and 
[ , ] ( , )a b x yw  is the weighting coefficient computed over a pixel neighborhood 

([ , ],[ , ])x a x a y b y b− + − + . The spatial neighborhood (2 1) (2 1)a b+ × + , also de-
noted as a filtering kernel of size, is introduced to meet the requirement on local in-
tensity gradient. Other requirements on intensity contrast and global spatial intensity 
variations are incorporated into the filter design by separating background according 
to a threshold δ , and computing the weighting coefficient [ , ] ( , )a bw x y as Eq. (2). 

[ , ]
[ , ][ , ]

if ( , )  and ( , ) 0 
( , )( , )

1 otherwise

G
L a b

L a ba b

I x y x y
x yw x y

µ δ µ
µ

> ≠
=  (2) 

where Gµ  and [ , ] ( , )L a b x yµ  are the global and local estimated sample means for fore-
ground pixels only, and δ  is a background threshold intensity value. 

It is apparent that the weighting coefficients could be ill-defined when the local 
sample mean takes very small values (the spatial kernel belongs to background with 
some noise, [ , ]( , ) 0L a b x yµ ≈ .) To avoid this problem, input image is thresholded first, 
and then the values of global and local sample means are computed only over fore-
ground pixels. In the filter design, we introduced two parameters, such as a back-
ground threshold δ  and a kernel size (2 1) (2 1)a b+ × + . 

Background separation: In general, the background threshold value could be deter-
mined by purely depending on images, such as variogram [17]. However, it is prefer 
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able that the noise model of different imaging techniques should be modeled differ-
ently based on known imaging physics such as Exponential, Rayleigh, Gaussian, 
Gamma, Poisson, or Weibull function [18]. In our background separation, we assume 
an exponential noise model for the CLSM background noise since it is well known 
that the noise in laser imaging can be modeled by an exponential function [13]. 

We derived δ  by modeling a frequency function of the pixel intensities, i.e., a his-
togram, followed by fitting with underlying physical models of CLSM imaging. We 
model the frequency function of intensity values as a conjunction of background noise 

( )vΛ  in a photo-multiplier tube and foreground fluorescent pixel intensity distribu-
tion ( )vΦ , where v  is an intensity value. Assuming that ( )vΛ  and ( )vΦ  follow an 
exponential and unknown exponential family of functional model respectively, we de-
fine the frequency functions as ( ) vv eβαΛ =  and ( )( ) ( ) vv v eκγΦ =  where ,α β  are 
constants and ( ), ( )γ κ⋅ ⋅  are some functions for foreground intensity values. Since de-
fined components are independent, assuming noise is additive, the frequency function 

( )F v  of output intensity can be modeled as a sum of ( )vΛ  and ( )vΦ , which is  
( ) ( ) ( )F v v v= Φ + Λ . 
In particular, since the background pixels usually appear in low-intensity ranges 

and we only consider the left tail of the ( )F v  where foreground intensity starts to con-
tributes to ( )F v  by fitting our noise model ( )vΛ  to the low intensity range of ( )F v . 
To compute the background frequency function, we estimated the parameters ,α β  
using the least-squares methods [19] as following: 

1 1 1

2

1 1 1

( ) ( ) ( ) ln( ( ))

ln( )( ) ( ) ( ) ln( ( ))

k k k

v v v

k k k

v v v

F v vF v F v F v

vF v v F v vF v F v

α
β

= = =

= = =

=  (3) 

where ( )F v  is the frequency (e.g., pixel count) of the intensity value v  in the input 
image, k  is the bin number (intensity value) in [1, ]n , and n  is the number of  bins. 

In order to find the threshold value which is dominantly determined by the back-
ground noise by photo-multiplier tube, we computed the sum of squared error ( )R k  
(Eq. (4)) by increasing k  from 3 to n  in Eq. (3), where ( )k vΛ  is an exponential 
function fit to first k  bins.  

( )R k
0.1 2

1

1
( ( ) ( ))

0.1

n

kv
F v v

n =
= − Λ  (4) 

Since we approximated the foreground pixel intensity distribution for the left tail 
only, the sum of squared error is calculated for the pixel intensity values in 10% of 
low intensity value range, i.e., [1, 25]  in byte (8-bit) image. It approximates ( )k vΛ  in 

the input image well enough since R  is not much affected by large intensity values.  
Finally, the background threshold value δ  is determined by the value k  where the 

estimated function ( )k vΛ  best fits with the background noise in the input image such 

as 
[1, ]

arg min( ( ))
k n

R kδ
∈

= .  
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Kernel size optimization: In order to compute local sample means [ , ] ( , )L a b x yµ , one 
has to choose the size and shape of a filtering kernel for an input image. We first con-
strained the kernel shape to a rectangle. Then we selected a kernel size by maximizing 
the global contrast while minimizing the gradient distortion, e.g., high frequency dis-
tortion. We used a global contrast metric C described in [21] which incorporates one 
of the requirements of the intensity heterogeneity correction problem as follows. 

( ) ( ( )) ( )1
mC f I E f I f Ii ii= − ×=  (5) 

where ( )f I  is the histogram (estimated probability density function) of all contrast 
values by using Sobel edge detector in an image I , ( )if I  is the density of i-th bin, 

( ( ))E f I  is the sample mean of the histogram ( )f I , and m  is the number of distinct 
contrast values in a discrete case. The equation includes the contrast magnitude term 
and the term with the likelihood of contrast occurrence. In general, image frames 
characterized by a large value of C  are more suitable for further processing than the 
frames with a small value of C . 

To demonstrate the high frequency image difference between the original image 
and the processed image, we define a metric D  as follows: 

2( ( , ) ( , ))
M N

org adj
hf hf

v u

D I u v I u v= −  (6) 

where org
hfI  and adj

hfI  are the high-pass filtered images of the original and the intensity 
adjusted image respectively. Finally, the filter size is selected by evaluating the 
maximum value of the ratio /C D  denoted as a measure of image saliency. 

Speckle noise removal: One of the side products of the mean-weight filtering is an 
easy detection of speckle noise in the background. Speckle noise is characterized by a 
pixel with very few or no neighboring pixels and the mean-weight filtering generates 
very high intensity correction value for the speckle pixels. We have eliminated 
speckle noise by removing the pixels with abnormally high intensity correction values 
statistically, and accepted the pixels with values within the range [0, 4 ]µ σ+  (99.99% 
of pixels are included), where µ  and σ  are the sample mean and standard deviation 
of the intensities in the corrected image. Finally, the values within the range 
[0, 4 ]µ σ+  are normalized to [0,255] to meet the dynamic range of output images (8 
bits per pixel).  

3   Experimental Results 

Simulation Results: Fig. 2 (left) shows a bias-free synthetic image (shown as hori-
zontal and vertical bars with different thickness and spacing, and Fig. 2 (middle) and 
(right) show intensity distorted images by pre-defined intensity variations (bias 
fields). Background noise is simulated by adding random exponential synthetic noise 
with density function 0.3( ) 0.3 vv eΛ = . 
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Fig. 2. (left) bias-free image (dotted line is shown to illustrate the intensity profile later in Fig. 
7), (middle, right) images with intensity distortion with synthetic noise 

Fig. 3. (left) shows the curves of residuals ( )R ⋅  for the two simulation images in 

Fig. 2. (middle, right) (see Eq. (4)). The background thresholds are selected based on 
the minimum value of the curves except the low value range between 1 and 3, which 
were 20 for both simulation images. Next, to optimize the kernel size for each image, 
we calculated the image saliency ( /C D ) for kernel sizes from 3 to 51, shown in Fig. 
3. (right). Generally, it is observed that; (1) for small kernels, the contrast C  is 
maximized but the high frequency distortion is large; (2) for large kernels, the high 
frequency distortion is minimized but the contrast C  is compromised. Therefore, the 
simulation results verified that the optimal kernel size is achieved by maximizing the 
contrast divided by the high frequency difference ( /C D ). In our simulation experi-
ments, we calculated /C D  using kernel sizes from 3 to 51 pixels wide, and obtained 
the optimum values equal to 33 and 47 pixel widths respectively (see the peaks in 
Fig.3 (right)).  

Given the background threshold and kernel size in Fig. 3, we show the intensity 
corrected images by the mean weight filtering in Fig. 4. (left and middle). Fig. 4. 
(right) shows the intensity correction maps applied to the intensity distorted (uncor-
rected) images. The intensity correction maps demonstrate higher weight in dark local  
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Fig. 3. (left) Residual for background thresholding in Eq, (4), and (right) image saliency as a 
function of the kernel size (see Eq. (5) and Eq. (6)) 
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Fig. 4. (left, middle) Intensity corrected images using the mean-weight filtering with the kernel 
size of 33 (left) and 47 (middle) respectively. (right) Intensity correction maps (pseudo colored) 
where upper and lower map corresponds to the (left) and (middle) image respectively. 

regions than in bright local regions. Regardless of the type of a bias field, all intensity 
corrected images show noticeable improvement such that the mean weight filtering 
corrects intensity heterogeneity over spatially large area while preserving the edge 
gradients (minimum high frequency distortion) over spatially small area.  

For visual comparison, we show the intensity correction results for the simulation 
images using Histogram equalization (HE), Histogram equalization with background  
 

 

Fig. 5. Result of Histogram Equalization, Histogram Equalization with background threshold-
ing, and CLAHE for simulation 1 (upper three images) and simulation 2 (lower three images) 
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separation (HEB) (background threshold = 20), and CLAHE (see Fig. 5). One could 
notice that HE saturated most of pixels, amplified background noise, and removed 
edge gradient significantly. HEB separated out background noise, but the edge gradi-
ent is not preserved well similarly to the HE, and CLAHE relatively well preserved 
the edge gradient, but the spatial (x-y) intensity heterogeneity has not been corrected 
in comparison to the Mean weight filtering.  

To demonstrate the spatial intensity correction result, Fig. 6. shows the intensity 
profiles (along the dotted line Fig. 2. (left) for the simulation 2 (see Fig. 2 (right)) of 
the uncorrected, HE, HEB, CLAHE, and the mean weight filtering. The intensity pro-
file clearly demonstrates that the intensity along x-y plane is best corrected by the 
mean weight filtering while preserving local intensity gradients, i.e., the peaks of in-
tensity value remains between 190 and 200.  

Comparative Results for CLSM Images: We applied the mean weight filtering 
method to a real CLSM image. The image was acquired with a Leica SP2 laser scan-
ning confocal microscope (Leica, Heidelberg, Germany) using the 40X objective with 
605~ 700 nm excitation wavelength range for the test specimens. The image was 
stored in tagged information file format (TIFF) with 512 by 512 pixel resolution. 
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Fig. 6. Intensity profile along the red dotted line in Fig. 3 (left) for the simulation image 2: In-
tensity profiles (left) for uncorrected, HE, and HEB, and (right) for uncorrected, CLAHE, and 
mean-weight filtering 
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Fig. 7. Residual of the estimated function for the input image in Fig. 8. The intensity threshold 
minimizing R is 26 (left), and the optimal kernel size (maximizing C/D) is 15 (right). 
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First, we decided the background threshold and the kernel size by the proposed 
method in the Section 2, which correspond to 26δ =  and 15a b= =  (see Fig. 7.)  

In order to quantitatively asses the quality of multiple filtering techniques for real 
CLSM images, multiple intensity correction results are compared by image contrast 
C  (Eq. (5)), high frequency distortion D  (Eq. (6)), the low frequency intensity het-
erogeneity S  (evaluated by the image entropy in low frequency domain [20]), and the 
number of saturated pixels N  as defined in Eq. (7).  

( ( , ), ( , ))
M N

org adj

v u

N sat I u v I u v=  (7) 

where 1 if ( , )  and ( , )  
( ( , ), ( , ))

0 otherwise    

org adj
org adj I u v l I u v l

sat I u v I u v
≠ == , orgI  and adjI  are the 

original and intensity adjusted images, and l  is the maximum intensity value of the 
original image, e.g. 255 in a byte image. For the best image quality, it is desirable to 
achieve large C  and small S , D , and N . 

Fig. 8. shows the input CLSM image with the processed results by existing and the 
mean-weight filtering method. One could visually notice that the histogram equalization  
 

   
                 (a)             (b)              (c) 

   
                 (d)            (e)                    (f) 

Fig. 8. CLSM test image: (a) Original test image, (b) histogram equalization, (c) histogram 
equalization with background thresholding, (d) CLAHE ("adapthisteq()" with default setting by 
Matlab Image Processing Toolbox, Build. R12), (e) mean weight filtering, and (f) intensity cor-
rection maps by the mean weight filtering. 
 



152 S.-C. Lee and P. Bajcsy 

method removes best intensity heterogeneity in large spatial regions but maintains low 
visual saliency and, most importantly, removes edge details (high frequency distortion) 
(see the second image in Fig. 9.). The histogram equalization with background threshold 
( 26δ = ) and Contrast Limited Adaptive Histogram Equalization demonstrate similar 
removal of edge gradient and edge details. To demonstrate the effect of edge gradient, 
we show a sub-region of the intensity corrected images in Fig. 9. They show that most 
of pixels around the edge were saturated using HE, HEB, or CLAHE while the mean 
weight filtering well preserves edge gradient.  

In addition to visual assessments, we show the quantitative evaluation of the com-
pared techniques with four quality metrics in Table 1. In general, an optimal intensity 
correction technique has to meet multiple optimization criteria, for example, minimize 
S , D  and N , and maximize C . For both measured test images, Table 1 shows that 
the mean-weight filtering achieves a normalized metric that is about 1.5 to 1.7 times 
larger than the second best performing technique. 

     

Fig. 9. Sub-region of intensity corrected images in Fig. 8. (from left, original image, HE, HEB, 
CLAHE, and Mean-weight filtering). 

Table 1.  Evaluation results in Fig. 8. The first and second best results are shown in bold and 
italic respectively. 

CLSM Image  HE HEB (26) CLAHE MWF (26,15) 
C 17.15 17.34 17.20 16.26 
S 74.27 73.40 74.86 66.24 
D 29.88 23.93 28.02 21.98 
N 330 330 334 0  

4   Conclusion and Discussion 

We introduced an intensity heterogeneity correction technique that adjusts intensity het-
erogeneity of 2D images, preserves fine structural details, and enhances the image con-
trast by performing spatially adaptive mean-weight filtering. The proposed technique 
was designed by formulating the problem requirements, defining image quality metrics, 
and then optimizing filter parameters based on an image analysis. We conclude that the 
developed mean-weight filtering technique outperforms other intensity correction meth-
ods by at least a factor of 1.5 when applied to fluorescent CLSM images.   

Although automatic selection of a kernel size shows optimized the global image sa-
liency, it is worth to consider some images with a mixture of different structures (e.g., 
edge thickness) that require multiple kernel sizes per image for different regions of in-
terest. If a user chooses to select a kernel size on his own, we would provide the fol-
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lowing considerations: (a) A large kernel tends to preserve the detail of rather large 
area, e.g., thick edge or spatial intensity heterogeneity in a feature region, and ex-
tremely large kernels correct minimally intensities in x-y plane. (b) A small kernel 
generates visually salient images by highlighting sharp intensity changes, e.g., small 
intensity discontinuities. However, extremely small kernels correct high frequency in-
tensity change which is typically considered as edge gradient (and need to be pre-
served). (c) A kernel size could be selected based on edge thickness: for thin edges, a 
smaller kernel size is preferred since only high frequency component should be cor-
rected. For thick edges, a larger kernel should be used since a low frequency compo-
nent should be corrected while preserving a high frequency component. Fig. 10 shows 
the mean weight filtering results with different kernel sizes. 

     

Fig. 10. Mean weight filtering with different kernel sizes: From left, the kernel width is equals 
to 3,7,9,21,51 

References 

1. Chen, X., Ai, Z., Rasmussen, M.,  Bajcsy, P., Auvil, L., Welge, M., Leach, L., Folberg, R.: 
Three-dimensional reconstruction of extravascular matrix patterns and blood vessels in 
human uveal melanoma tissue: Preliminary findings. Invest. Ophthal.  & Vis. Sci., 44 
(2003)  2834-2840 

2. Benson, D., Bryan, J., Plant, A., Gotto, A., Smith, L.: Digital Imaging fluorescence mi-
croscopy: Spatial heterogeneity of photobleaching rate constants in individual cells. J. Cell 
Biol.  100 (1985) 1309-1323 

3. Jungke, M., Seelen, von W.,  Bielke, G. , Meindl, S.  et al.: A system for the diagnostic use 
of tissue characterizing parameters in NMR-tomography. Proc. of Info. Proc. in Med. Im-
aging, IPMI'87, 39  (1987)  471-481 

4. Rigaut, J., Vassy, J.: High-resolution 3D images from confocal scanning laser microscopy: 
quantitative study and mathematical correction of the effects from bleaching and fluores-
cence attenuation in depth. Anal. Quant. Cytol.  13  (1991) 223-232 

5. Oostveldt, P. V., Verhaegen, F., Messen, K.: Heterogenous photobleaching in confocal 
microscopy caused by differences in refractive index and excitation mode. Cytometry  32 
(1998) 137-146 

6. Tauer, U., Hils, O.: Confocal Spectrophotometry, in Sci. and Tech. Info., Sp. issue: Con-
focal Microscopy, CDR 4  (2000) 15-27 



154 S.-C. Lee and P. Bajcsy 

7. Rodenacker, K., Aubele, P., Hutzler, M., Adiga, P.: Groping for quantitative digital 3-D 
image analysis: an approach to quantitative fluorescence in situ hybridization in thick tis-
sue sections of prostate carcinoma. Anal. Cell. Pathol.  15  (1997) 19-29 

8. Irinopoulo, T., Vassy, J., Beil, M., Nicolopoulo, P., Encaoua, D., Rigaut, J.: 3-D DNA im-
age cytometry by confocal scanning lasermicroscopy in thick tissue blocks of prostatic le-
sions. Cytometry,  27 (1997) 99-105 

9. Roerdink, J., Bakker, M.: An FFT-based method for attenuation correction in fluorescence 
confocal microscopy. J. Microsc.  169 (1993) 3-14 

10. Liljeborg, A., Czader, M., Porwit, A.: A method to compensate for light attenuation with 
depth in 3D DNA image cytometry using a confocal scanning laser microscope. J. Mi-
crosc.  177 (1995) 108-114 

11. Kervrann, C., Legland, D., Pardini, L.: Robust incremental compensation of the light at-
tenuation with depth in 3D fluorescence microscopy. J. Microsc.,  214 (2004) 297-314 

12. Oostveldt, P., Verhaegen, F., Messens, K.: Heterogeneous photobleaching in confocal mi-
croscopy caused by differences in refractive index and excitation mode. Cytometry,  32 
(1998) 137-146 

13. Gonzalez, R.,  Woods, E.: Digital Image Processing. 2nd ed., Prentice hall, (2002) 
14. Pizer, S. M., Zimmerman, J. B., Stabb, E.: Adaptive grey level assignment in CT scan dis-

play. J. Comp. Assist. Tomography,  8 (1984)  300-305 
15. Pisano, E., Zong, S., Hemminger, M., De Luca, M., Johnsoton, R., Muller, K., Braeuning, 

M., Pizer, S.: Contrast Limited Adaptive Histogram Equalization Image Processing to Im-
prove the Detection of Simulated Spiculations in Dense Mammograms. J. Digital Imaging,  
11(4) (1998) 193-200 

16. Styner M, Brechbuhler C, Szekely G., Gerig G.: Parametric estimate of intensity inho-
mogeneities applied to MRI. IEEE Trans Med Imaging, 19(3) (2000) 153-65 

17. Sanchez-Brea, L.M., Bernabeu, E.: On the standard deviation in CCD cameras: a 
variogram-based technique for non-uniform images. J. Electronic Imaging 11(2) (2002) 
121-126. 

18. Hu, J., Razdan, A.,  Nielson, G., Farin, G., Baluch, D., Capco, D.: Volumetric Segmenta-
tion Using Weibull E-SD Fields, IEEE Trans. on Vis. and Comp. Graphics,  9(3) (2003) 

19. Weisstein, E. Least Squares Fitting--Exponential. from MathWorld--A Wolfram Web Re-
source. http://mathworld.wolfram.com/LeastSquaresFittingExponential.html 

20. Mangin, J.: Entropy minimization for automatic correction of intensity nonuniformity 
Math. Method in Biomed. Image Analysis (MMBIA), (2000) 162-169 

21. Bajcsy P., Groves, P.: Methodology for Hyperspectral Band Selection, Photo. Eng. and 
Remote Sensing J., 70  (2004) 793-802 



Quasi-conformal Flat Representation of
Triangulated Surfaces for Computerized

Tomography

Eli Appleboim, Emil Saucan, and Yehoshua Y. Zeevi

Electrical Engineering Department, Technion, Haifa, Israel
{eliap, semil, zeevi}@ee.technion.ac.il

Abstract. In this paper we present a simple method for flattening of
triangulated surfaces for mapping and imaging. The method is based on
classical results of F. Gehring and Y. Väisälä regarding the existence
of quasi-conformal and quasi-isometric mappings between Riemannian
manifolds. A random starting triangle version of the algorithm is pre-
sented. A curvature based version is also applicable. In addition the algo-
rithm enables the user to compute the maximal distortion and dilatation
errors. Moreover, the algorithm makes no use to derivatives, hence it is
robust and suitable for analysis of noisy data. The algorithm is tested
on data obtained from real CT images of the human brain cortex and
colon, as well as on a synthetic model of the human skull.

1 Introduction

In many medical applications of image processing, such as medical imaging for
noninvasive diagnosis and image guided surgery, a paramount importance lies in
the process of two-dimensional representation by flattening of three-dimensional
object scans. For example, it is often advantageous to present three-dimensional
MRI or CT scans of the cortex as flat two-dimensional images. Yet in order to do
so in a meaningful manner, so that the diagnosis will be accurate, it is essential
that the geometric dilatation and distortion, in terms of change of angles and
lengths, caused by this representation, will be minimal. However, since most
surfaces of medical interest, such as colon, cortex, etc., are not isometric to the
plane, a zero-distortion solution is seldom feasible. A reasonable solution to this
problem is given by conformal maps ([9], [10]). Mapping the surface conformally
to the (complex) plane preserves angles and therefore the local shape.

Naturally, the problem of conformal flattening of surfaces, in particular for
medical imaging, has focused the interest of many researchers in the recent years,
and there exists a vast literature covering the said problem (see Section 1.1 be-
low). In fact, in all previous works, only approximations of conformal mappings
have been achieved, and as such they all suffer from the presence of some amount
of distorsion/dilatation. Therefore, one should aim to control the amount of in-
herent distortion. This can be achieved by quasi-isometric/quasi-conformal maps
(i.e. maps that are almost isometries/conformal; precise definition will follow in
Section 2). Practically, there is a tradeoff between the cost of an implementation
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on one hand and accuracy on the other. Common to all solutions is the fact,
which cannot be avoided because of the inevitable distortion, that the more
locally one is willing to focus, the more accurate the results become.

1.1 Related Works

As stated above, the problem of minimal distortion flattening of surfaces at-
tracted, in recent years, a great attention and interest, due to its wide range of
applications.

In this section we briefly review some of the methods that were proposed for
dealing with this problem.

Variational Methods. Haker et al. ([9], [10]) introduced the use of a variational
method for conformal flattening of CT/MRI 3-D scans of the brain/colon for the
purpose of medical imaging. The method is essentially based on solving Dirichlet
problem for the Laplace-Beltrami operator �u = 0 on a given surface Σ, with
certain boundary conditions on ∂Σ. A solution to this problem is a harmonic
(thus conformal) map from the surface to the (complex) plane. The solution
suggested in [9] and [10] is a PL (piecewise linear) approximation of the smooth
solution, achieved by solving a proper system of linear equations.

Circle Packing. Hurdal et al. ([11]) attempt to obtain such a conformal map by
using circle packing. This relies on the ability to approximate conformal struc-
ture on surfaces by circle packings. The authors use this method for MRI brain
images and conformally map them to the three possible models of geometry in
dimension 2 (i.e. the 2-sphere, the Euclidian plane and the Hyperbolic plane).
Yet, the method is applicable for surfaces which are topologically equivalent to
a disk whereas the brain cortex surface is not. This means that there is a point
of the brain (actually a neighborhood of a point), which will not map confor-
mally to the plane, and in this neighborhood the dilatation will be infinitely
large. Hurdal et al. solve this problem by removing the corpus callosum, thus
obtaining a surface homeomorphic to a 1-punctured sphere, and thus confor-
mally equivalent to a disk ([11], [12]). An additional problem arises due to the
necessary assumption that the surface triangulation is homogeneous in the sense
that all triangles are equilateral. Such triangulations are seldom attainable.

Holomorphic 1-forms. Gu et al. ([7], [8], [6]) are using holomorphic 1-forms in or-
der to compute global conformal structure of a smooth surface of arbitrary genus
given as a triangulated mesh. holomorphic 1-forms are differential forms (differ-
ential operators) on smooth manifolds, which among other things can depict
conformal structures. This method indeed yields a global conformal structure
hence, a conformal parameterization for the surface however, computing homol-
ogy basis is extremely time consuming.

Angle Methods. In [13] Sheffer et al. parameterize surfaces via an angle based
method in a way that minimizes angle distortion while flattening. However, the
surfaces are assumed to be approximated by cone surfaces, i.e. surfaces that are
composed from cone-like neighborhoods.
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To summarize, all the methods described above compute only approximation to
conformal mappings, therefore producing only quasi-conformal mappings, with
no precise estimates on the dilatation.

In this paper we propose yet another solution to this problem. The proposed
method relies on theoretical results obtained by Gehring and Väisalä in the
1960’s ([5]). They were studying the existence of quasi-conformal maps between
Riemannian manifolds. The basic advantages of this method resides in its sim-
plicity, in setting, implementation and its speed. Additional advantage is that it
is possible guarantee not to have distortion above a predetermined bound, which
can be as small as desired, with respect to the amount of localization one is will-
ing to pay (and, in the case of triangulated surfaces, to the quality of the given
mesh). In fact, the proposed method is – to the best of our knowledge – the only
algorithm capable of computing both length distortion and angle dilatation. The
suggested algorithm is best suited to cases where the surface is complex (high
and non-constant curvature) such as brain cortex/colon wrapping, or of large
genus, such as skeleta, proteins, etc. Moreover, since together with the angular
dilatation, both length and area distortions are readily computable, the algo-
rithm is ideally suited for applications in Oncology, where such measurements
are highly relevant.

The paper is organized as follows: In the next section we introduce the the-
oretical background, regarding the fundamental work of Gehring and Väisalä.
Afterwards we describe our algorithm for surface flattening, based on their ideas.
In Section 4 we present some experimental results of this scheme and in Section
5 we discuss possible extensions of this study.

2 Theoretical Background

2.1 Basic Definitions

Definition 1. Let D ⊂ R
3 be a domain. A homeomorphism f : D → R

3 is
called a quasi-isometry (or a bi-lipschitz mapping), if there exists 1 ≤ C < ∞,
such that

1
C

|p1 − p2| ≤ |f(p1) − f(p2)| < C|p1 − p2| , for all p1, p2 ∈ D.

C(f) = min{C | f is a quasi − isometry} is called the minimal distortion of f
(in D).

Remark 1. If f is a quasi-isometry then KI(f) ≤ C(f)2 and KO(f) ≤ C(f)2

where KI(f), KO(f) represent the inner, respective outer dilatation of f (see
see v. It follows that any quasi-isometry is a quasi-conformal mapping (while
– evidently – not every quasi-conformal mapping is a quasi-isometry). Quasi-
conformal is the same as quasi-isometry where distances are replaced by angles.

Definition 2. Let S ⊂ R
3 be a connected set. S is called admissible iff for any

p ∈ S, there exists a quasi-isometry ip such that for any ε > 0 there exists a
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neighbourhood Up ⊂ R
3 of p, such that ip : Up → R

3 and ip(S ∩ Up) = Dp ⊂ R
2,

where Dp is a domain and such that C(ip) satisfies:

(i) sup
p∈S

C(ip) < ∞ ;

and
(ii) sup

p∈S
C(ip) < 1 + ε .

2.2 The Projection Map

Let S be a surface, n̄ be a fixed unitary vector, and p ∈ S. Let V � D2,
D2 = {x ∈ R

2
∣∣ ||x|| ≤ 1} be a disk neighbourhood of p. Moreover, suppose that

for any q1, q2 ∈ S, the acute angle �(q1q2, n̄) ≥ α (see Figure 2). We refer to the
last condition as the Geometric Condition or Gehring Condition.

S

p
n
_

α

α

  V    S

U ~_D

q
q1

2

2

Fig. 1. The Geometric Condition

Then for any x ∈ V there is a unique representation of the following form:

x = qx + un̄ ;

where qx lies on the plane through p which is orthogonal to n̄ and u ∈ R.
Define:

Pr(x) = qx .

Note: n̄ need not be the normal vector to S at p.

By [5], Section 4.3 and Lemma 5.1, we have that for any p1, p2 ∈ S and any
a ∈ R+ the following inequalities hold:

a

A
|p1 − p2| ≤ |Pr(p1) − Pr(p2)| ≤ A|p1 − p2| ;

where

A =
1
2
[(a cscα)2 + 2a + 1]2 +

1
2
[(a cscα)2 − 2a + 1]2 .
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In particular for a = 1 we get that

C(f) ≤ cotα + 1 ; (1)

and

K(f) ≤
((1

2
(cotα)2 + 4

) 1
2 +

1
2

cotα
) 3

2 ≤ (cotα + 1)
3
2 ; (2)

where
K(f) = max

(
KO(f), KI(f)

)
is the maximal dilatation of f .

The Geometric Condition. From the discussion above we conclude that S ⊂
R

3 is an admissible surface if for any p ∈ S there exists n̄p such that for any
ε > 0, there exists Up � D2, such that for any q1, q2 ∈ Up the acute angle
�(q1q2, n̄p) ≥ α, where

(i) inf
p∈S

αp > 0 ;

and
(ii) inf

p∈S
αp <

π

2
− ε .

Example 1. Any surface in S ∈ R
3 that admits a well-defined continuous turning

tangent plane at any point p ∈ S is admissible.

3 The Algorithm

We will present in this section the algorithm that is used for obtaining a quasi-
isometric (flat) representation of a given surface. First assume the surface is
equipped with some triangulation T . Let Np stand for the normal vector to the
surface at a point p on the surface.

Second, a triangle ∆, of the triangulation must be chosen. We will project a
patch of the surface quasi-isometrically onto the plane included in ∆. This patch
will be called the patch of ∆, and it will consists of at least one triangle, ∆ itself.
There are two possibilities to chose ∆, one is in a random manner and the other
is based on curvature considerations. We will refer to both ways later. For the
moment assume ∆ was somehow chosen. After ∆ is (trivially) projected onto
itself we move to its neighbors. Suppose ∆′ is a neighbor of ∆ having edges e1,
e2, e3, where e1 is the edge common to both ∆ and ∆′.

We will call ∆′ Gehring compatible w.r.t ∆, if the maximal angle between e2 or
e3 and N∆ (the normal vector to ∆), is greater then a predefined measure suited
to the desired predefined maximal allowed distortion, i.e. max {ϕ1, ϕ2} ≥ α,
where ϕ1 = �(e2, N∆), ϕ2 = �(e3, N∆); (cf. (1), (2)).

We will project ∆′ orthogonally onto the plane included in ∆ and insert it to
the patch of ∆, iff it is Gehring compatible w.r.t ∆.

We keep adding triangles to the patch of ∆ moving from an added triangle
to its neighbors (of course) while avoiding repetitions, till no triangles can be
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Fig. 2. Gehring Compatible Triangles

added. If by this time all triangles where added to the patch we have completed
constructing the mapping. Otherwise, chose a new triangle that has not been
projected yet, to be the starting triangle of a new patch. A pseudocode for this
procedure can be easily written.

Remark 2. There are two ways for choosing a base triangle for each patch. One
is by curvature considerations, i.e. taking a triangle which the sum of the (mag-
nitude of) curvatures of its vertices is minimal, and the other one is by randomly
choosing a triangle for each new patch.

Remark 3. One should keep in mind that the above given algorithm, as for any
other flattening method, is local. Indeed, in a sense the (proposed) algorithm
gives a measure of “globality” of this intrinsically local process.

Remark 4. Our algorithm is best suited for highly folded surfaces, because of its
intrinsic locality, on the one hand, and computational simplicity, on the other.
However, on “quasi-developable” surfaces (i.e. surfaces that are almost cylindri-
cal or conical) the algorithm behaves similar to other algorithms, with practically
identical results.

4 Experimental Results

We now proceed to present some experimental results obtained by applying the
proposed algorithm, both on synthetic surfaces and on data obtained from actual
CT scans.

In each of the examples both the input surface and a flattened representation
of some patch are shown. Details about mesh resolution as well as flattening
distortion are also provided. The number of patches needed in order to flatten
the surface is also given. In all images, the small rectangle shown on the surface
represents a base triangle for the flattened patch. The colored area in each of
the images represents the patch being flattened.

The algorithm was implemented in two versions, or more precisely two possible
ways of processing, automatic versus user defined.
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Fig. 3. Skull Flattening: The role of almost flat regions is accentuated. The resolution
is of 60,339 triangles. Here α is 10◦ and the dilatation is 1.1763.

Fig. 4. Colon Section: Observe the highly folded region that a large number of patches
while preserving a small dilatation. The image shows the back-side of the colon, whose
flattened image is depicted in Fig. 5. (b). CT-data is in curtesy of Dr. Doron Fisher
from Rambam Madical Center in Haifa.

– Automatic means that the triangles serving as base points for the patches
to be flattened are chosen automatically according to curvature, as stated
in Remark 3.2. The discrete curvature measure employed is that of angular
defect, due to its simplicity and high reliability (see [14]).

– User defined means that at each stage the user chooses a base triangle for
some new patch.
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Since at this stage we did not address the problem of properly gluing of
patches, in the following example of colon flattening, one can see the appearance
of holes in the flattened presentation caused by artificially gluing neighboring
patches to each other. We refer to this problem in the next section.

Experiments have shown that results of the automatic process are similar, in
terms of the dilatation, to those obtained from the user defined process yet, in
order to flatten entire surface in the user defined method one needs in average
25% more patches.

5 Concluding Remarks and Future Study

Sampling and flattening of folded surfaces embedded in higher dimensional Rie-
mannian manifolds combines several important facets and problems encountered
in image processing and analysis of surfaces. In our broader study [3], we deal
with the issues of nonuniform smoothing and sampling. Here we assumed that
a proper sampling and triangulation of the surfaces are given. the emphasis
was therefore on quasi-conformal and quasi-isometric aspects of the mapping
between Riemannian manifolds. While the theory is general and applicable to
mapping from any higher to lower dimensional manifolds, here we presented a
specific algorithm developed for the case of mapping from a three-dimensional
to two-dimensional flat surface.

From the implementation results it is evident that this algorithm while being
simple to program as well as efficient, also gives good flattening results and main-
tains small dilatations even in areas where curvature is large and good flattening
is a challenging task. Moreover, since there is a simple way to assess the resulting
dilatation/distorsion, the algorithm was implemented in such a way that the user
can set in advance an upper bound on the resulting dilatation/distorsion. Let us

(a) (b)

Fig. 5. Colon CT-Images: (a) Triangulated colon surface taken from 3 slices of human
colon scan and (b) One half of the colon, after flattening. One is able to observe the
holes caused by improper gluing of neighbouring patches.
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Fig. 6. Cerebral Cortex Flattening: A patch obtained in the flattening of the parietal
region. The resolution is 15.110 triangles, the angle chosen is 5◦, producing a dilatation
of 1.0875.
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stress once more that, to the best of our knowledge, our method represents the
only algorithm capable of computing both length distortion and angle dilatation.

An additional advantage of the presented algorithm is related to the fact
that, contrary to some of the related studies, no use of derivatives is made.
Consequently, the algorithm does not suffer from typical drawbacks of derivative
computations like lack of robustness, etc.

Moreover, since no derivatives are employed, no smoothness assumption about
the surface to be flattened are made, which makes the algorithm presented herein
ideal for use in cases where smoothness is questionable (to say the least).

The algorithm may be practical for applications where local yet, good analysis
is required such as medical imaging with the emphasis on flattened representa-
tion of the brain and the colon (virtual colonoscopy) – see [1]. Further study is
currently undertaken.

The main issue for further investigation, remains the transition from local to
global in a more precise fashion, i.e. how can one glue two neighbouring patches
while keeping fixed bounded dilatation. In more technical terms, this amounts
to actually computing the holonomy map of the surface – see [15]. Comput-
ing holonomy tells you exactly how to match-up two areas of a surface having
different conformal characteristics so that a bigger patch with controlled quasi-
conformal behaviour will be obtained. This is also under current investigation.

Evidently, as can be seen in Fig. 5, of the colon flattening example, one can
have two neighbouring patches, with markedly different dilataions/distorsions,
which results in different lengths for the common boundary edges. Therefore,
“cuts” and “holes” appear when applying a “naive” glueing.

We conclude by remarking that while the the application presented here is
for 2D-images of 3D-surfaces, the results of Gehring and Väisalä are stated and
proven for any dimension (and co-dimension). Therefore, implementations for
higher dimensions are also in progress.

Acknowledgment

Emil Saucan is supported by the Viterbi Postdoctoral Fellowship. Research is
partly supported by the Ollendorf Minerva Center.

The authors would like to thank Ofir Zeitoun and Efrat Barak and Amiad
Segal and Ronen Lev for their dedicated and skillful programming of the algo-
rithms.

References

[1] Appleboim, E., Saucan E., and Zeevi, Y. Minimal-Distortion Mappings of Surfaces
for Medical Imaging, Proceedings of VISAPP 2006, to appear.

[2] Appleboim, E., Saucan, E., and Zeevi, Y.Y. On Sampling and Reconstruction of
Surfaces, Technion CCIT Report, 2006.

[3] Appleboim, E., Saucan, E., and Zeevi, Y.Y.
http://www.ee.technion.ac.il/people/eliap/Demos.html



Quasi-conformal Flat Representation of Triangulated Surfaces 165

[4] Caraman, P. n-Dimensional Quasiconformal (QCf) Mappings, Editura Academiei
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Abstract. Many computer aided diagnosis schemes in chest radiography start
with preprocessing steps that try to remove or suppress normal anatomical struc-
tures from the image. Examples of normal structures in posteroanterior chest radi-
ographs are bony structures. Removing these kinds of structures can be done quite
effectively if the right dual energy images—two radiographic images from the
same patient taken with different energies—are available. Subtracting these two
radiographs gives a soft-tissue image with most of the rib and other bony structures
removed. In general, however, dual energy images are not readily available.

We propose a supervised learning technique for inferring a soft-tissue image
from a standard radiograph without explicitly determining the additional dual
energy image. The procedure, called dual energy faking, is based on k-nearest
neighbor regression, and incorporates knowledge obtained from a training set
of dual energy radiographs with their corresponding subtraction images for the
construction of a soft-tissue image from a previously unseen single standard chest
image.

1 Introduction

One of the major difficulties in interpreting projection chest radiographs stems from
the fact that many normal anatomical structures are shown superimposed on possibly
abnormal structures. For this reason, many computer aided diagnosis (CAD) schemes
in projection chest radiography may benefit from the suppression of as much of the
normal structures as possible. In the ideal case this would mean that, after processing a
chest radiograph, one obtains an image depicting only the abnormalities present in the
original radiograph. In practice however, the output will be an image that contains less
of the normal structures and hopefully stronger responses to the abnormalities.

Especially the suppression of the bony structures that overlay the lung fields, e.g.
clavicles, ribs, and scapulae, is interesting because in many detection tasks it would
lead to a reduction in the number of false positives. For instance, a recent study showed
that most lung cancer lesions that are missed on frontal chest radiographs are located
behind the ribs and that the inspection of a soft-tissue image can improve detection
performance [1]. In addition, we note that obtaining a bone dual energy (DE) image
would also be interesting in its own respect. It enables, for example, a better detection
of calcified (benign) nodules [2].

In many digital chest units, it is technically feasible to acquire two radiographs with
different energies (kVs) at the same time: The DE images (see Figure 1). These im-
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ages can then be used to obtain a subtraction image1 in which bony structures are al-
most entirely invisible (see Figure 1, refer to [3] for more on the technical and physical
background of this technique). However, most of the time, DE images are not readily
available and one may attempt to construct such a subtraction image in a different way.

Fig. 1. Top row: An instance of DE images. On the left is the original PA chest radiograph and
on the right the image containing the bony structures. Bottom row: The left image shows the
soft-tissue image associated with the DE images which is obtained through subtraction. On the
right is the corresponding manual lung field segmentation.

Here we propose the suppression of bony structures from the lung fields of standard
posteroanterior (PA) chest radiographs by estimating a soft-tissue image using regres-
sion (see also [4]). This soft-tissue image should be similar to what would normally be
obtained by subtracting a pair of DE images. Here, an attempt is made to infer the (high
energy level) bone image from the original radiograph. The pair obtained can then be
used to construct a subtraction image with much of the bony structures suppressed. This
method is referred to as explicit dual energy faking (explicit DEf). A different approach
pursued is the direct prediction of a soft-tissue image from a PA chest radiograph with-
out explicitly determining the bone image. This method is referred to as implicit dual
energy faking (implicit DEf).

The approach to the problem is supervised and uses a number of actual PA radi-
ographs and their corresponding soft-tissue images. These training images are used to

1 Although we refer to these kind of images as subtraction images, they are not necessarily
obtained from the raw dual energy pair by mere subtraction. Pre- and postprocessing of the
images may be needed for this, which makes it in fact a nonlinear operation.
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model the mapping we are looking for, i.e, the one used to predict bone or soft-tissue
subtraction images from conventional radiographs. The mapping is formulated in terms
of a k-nearest neighbor regression (kNNR) in which a nonparametric k-nearest neigh-
bor procedure is employed to predict the pixel values in the subtraction image from per-
pixel gray value measurements (features) in the original radiograph. Other approaches
to normal structure suppression from chest radiographs are based on temporal [5,6,7]
or contralateral subtraction [8].

For the temporal technique, an earlier radiograph of the patient must be available. If
there is, attempts can be made to register this image to the radiograph currently being
analyzed and then subtract these images to remove the normal structures. This technique
has the potential of not only removing the bony structures, but to remove all normal
structures from the image. On the other hand however, if there are already abnormalities
in the earlier radiograph, it is of course also possible that abnormalities are removed
completely or in part in the subtraction image. Another crucial step in the procedure,
also causing problems, is the registration of both images: If the registration is not done
properly, we might even create suspect artifacts in the subtraction image.

For the contralateral technique, one does not need a previous image of the patient.
In this case, the symmetry of the lung fields and rib cage are used for the removal of
these normal structures. The subtraction is obtained by subtracting a mirrored version
of the original radiograph and the original itself after they have been registered in the
appropriate way [8]. In several cases this contralateral subtraction technique has proven
to be powerful, however the actual asymmetry of the lung regions may cause problems
and a misregistration may cause suspect artifacts in the image, as is the case with the
temporal subtraction technique.

2 Materials and Methods

PA dual energy radiographs and JSRT data. The materials used for training the map-
ping are eight pairs of standard PA chest radiographs together with their corresponding
DE and soft-tissue images. These images were obtained from the University of Chicago,
IL, Department of Radiology. The images used in the tests have dimensions 512 by 512
and were obtained by linearly subsampling the original 1760 by 1760 images. See Fig-
ure 1 for an example of a PA and a soft-tissue image. The evaluation is carried out using
the Chicago data as well as two radiographs taken from the JSRT (Japanese Society of
Radiological Technology) database [9]. The latter images are used to inspect the per-
formance of the scheme when training is performed on radiographs coming from one
unit and used to infer soft-tissue images on radiographs coming from another unit (e.g.
coming from a different manufacturer, using different post-processing methods, etc.). In
addition, both these images contain a lung nodule enabling us to check how the system
behave on such abnormalities.

Because we are interested in the performance of the scheme within the lung fields,
in addition to the radiographs, manual delineations were obtained and employed in the
experiments to indicate the regions of interest (see Figure 1 for an example). This step
can be automated, see, for example, [10].
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Processing prior to regression. The PA—both from the Chicago and the JSRT data-
bases—and soft-tissue images are six times locally normalized on a very large scale
σ equal to 128 pixels. This is done to remove possible image dependent near-global
offsets and intensity variations.

A locally normalized form L̄ of an original image L is defined as

L̄ =
L − Lσ√

(L2)σ − (Lσ)2
,

where Lσ defines a Gaussian blurred [11,12] version of L at scale σ. The DE images
used in the training phase are constructed from the normalized PA and soft-tissue image
by subtracting the one from the other (this latter image is what is actually depicted in
the upper-right corner of Figure 1).

Additionally, the normalization also aids the possibility of inferring soft-tissue im-
ages from radiographs coming from a different unit. With respect to this point, we
should remark that it is not clear that carrying out a local normalization multiple times
makes it generally possible to switch between units and still use the same faking scheme
for inferring soft-tissue or bone images from a standard PA image. In our current exper-
iments, normalizing the images turns out to work reasonably well and so no additional
image processing or unit-dependent feature transformations are applied. However, to
finally make DEf schemes broadly applicable, it may be necessary to apply more elab-
orate processing techniques first.

k-Nearest neighbor regression. The method used for predicting a soft-tissue image
from a standard chest radiograph is per-pixel k-nearest neighbor regression (kNNR)
[13]. The most well-known method to perform regression is simple linear regression,
which aims to optimally predict the output values in terms of a linear combination of
its associated inputs [14]. However, for the current purpose, linear regression is too
rigid to perform well and therefore the nonparametric k-nearest neighbor method is
employed. This type of regression has a strong theoretical basis and many results are
known concerning its convergence properties and consistency characteristics [13].

Finally, experiments were also conducted with kNNR in conjunction with the linear
dimension reduction technique presented in [4].

3 Pilot and Leave-One-Out Experiments

In order to test the DEf techniques, leave-one-out experiments were conducted. That
is, mappings based on kNNR were trained using seven pairs of images—which consti-
tutes the training set, and tested on the remaining PA image. The performance of the
DEf methods is measured by means of the standard correlation, i.e., Pearson’s r [15],
between the target image and the inferred image.

Predictors/features. Before one can actually perform kNNR, however, one has to de-
cide on the features to use as predictor variables. In addition, it has to be decided if—
and if so, which—linear dimension reduction should be performed. In order to do so
for DEf, a small pilot experiment was run on a single fold from the leave-one-out pro-
cedure in which several combinations of Gaussian kernel-based n-jets [11,12] over sev-
eral scales were examined. That is, at every pixel position, on several scales, features
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obtained using up to nth order derivatives of Gaussian filters are included. For im-
plicit DEf, the final set of features used for every pixel position consists of all Gaussian
kernel-based features up to order 3 at scales 1, 2, 4, 8, 16, and 32. In addition to these
60 features, the raw pixel value was included, resulting in 61 input variables. The fea-
tures for explicit DEf are all Gaussian features up to order 2 at 6 scales logarithmically
distributed between 1 and 64 plus the raw gray value which results in 37 features.

Dimension reduction. It should be noted that for the initial regression step, the exact
choice of features appears not to be really critical. The system does not seem to behave
significantly different over a range of settings. Most notable is that the order is more of
an influence than the size and number of scales. Linearly transforming the input features
using common techniques, like normalization (or standardization) of the features or
global whitening of the input, did have a clear, but detrimental effect on the performance
of the system. However, whitening the data in combination with nonparametric local
linear dimension reduction (see [4]) seems to give a substantial improvement in case of
performing explicit DEf. A dimension reduction, after whitening, also seems to give a
moderately improved implicit DEf. Based on our findings in the pilot experiments, we
decided to compare 4 different schemes in the leave-one-out experiments: Two implicit
and two explicit schemes and two schemes with and two schemes without dimension
reduction. Table 1 gives an overview of settings used in this comparison. Two of these
schemes are also used in the additional experiments on the two JSRT radiographs.

Table 1. Settings employed in the regression schemes used for performing implicit and explicit
dual energy faking. One implicit DEf scheme uses the full predictor vector, while the other em-
ploys an additional linear dimension reduction (LDR) for which the target dimension d and the k
defining the neighborhood are also provided. The same holds for the explicit scheme.

Gaussian predictors
k

LDR
(features) d

implicit DEf
up to order 3, scales

51
—

1,2,4,8,16,32 15

explicit DEf
up to order 2, scales

51
—

1,2.30,5.28,12.13,27.86,64 18

k (in the kNNR). The number of neighbors used in the regression, k, was set to 51 for
all schemes. Again, not much difference in performance was visible for a wide range of
ks. Only when k becomes too low (e.g. k < 10) or to high (e.g. k > 100), the resulting
soft-tissue image significantly deteriorates. In the former case it becomes much more
noisy and in the latter case the output image tends to be oversmoothed.

4 Experimental Results

The Chicago data set. Table 2 gives the leave-one-out results over all eight images in
the Chicago data set. The predicted image is compared to the soft-tissue image. Com-
parison is based on the standard parametric correlation, Pearson’s r, of the gray values
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Table 2. Average correlation over the eight instances from the Chicago data set obtained from
the leave-one-out experiments are provided together with the p-values based on a paired t-test
by which means the several schemes are compared to each other. Note the improvements ob-
tained using the schemes employing dimension reduction. Note also the high correlation the
unprocessed PA radiographs already attain with the soft-tissue images.

implicit DEf explicit DEf
PA full LDR full LDR

average 0.965 0.983 0.985 0.983 0.987
PA

p-value

— 2.8 · 10−6 3.4 · 10−6 4.5 · 10−7 4.3 · 10−8

implicit full 2.8 · 10−6 — 3.5 · 10−3 7.6 · 10−1 4.3 · 10−4

implicit LDR 3.4 · 10−6 3.5 · 10−3 — 2.8 · 10−2 2.5 · 10−2

explicit full 4.5 · 10−7 7.6 · 10−1 2.8 · 10−2 — 6.3 · 10−6

explicit LDR 4.3 · 10−8 4.3 · 10−4 2.5 · 10−2 6.3 · 10−6 —

Fig. 2. On the left an example of a target bone image, which is also depicted in Figure 1. On
the right is the explicitly faked bone image which is obtained using the explicit DEf scheme in
combination with dimension reduction.

within the regions of interest, i.e., the lung fields. The same measure is determined be-
tween the soft-tissue image and the original PA radiograph. The latter is done to put
the obtained correlations between soft-tissue and implicit DEf prediction in a better
perspective. From the table it is clear that explicit DEf in conjunction with the dimen-
sion reduction scheme performs significantly better than the other schemes. Although
in comparison with the implicit scheme in combination with LDR this significance is
only moderate.

In addition to the results in the table, we report that for the full and the LDR-based
explicit DEf schemes, the average correlations between the inferred bone image and the
target bone image are 0.747 and 0.805, respectively (p-value for the difference equals
2.4·10−4). Note that the difference in correlation, 5.8·10−2 in this case, is considerably
larger than when measured using the inferred soft-tissue images in which case it is
4.0 · 10−3.

Clearly, the correlation between original PA radiograph and target soft-tissue image
is generally already very large: Larger than 0.960 over all eight images. For this reason
comparing of the outcomes of the experiments may not be obvious and, in addition,
the improvements the schemes attain may not be well appreciated. Therefore, a second
evaluation is provided in which for every image the correlation score between the PA
image and the soft-tissue image was set to zero and perfect correlation was set to 1.
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Table 3. Average normalized correlation over the eight instances from the Chicago data set ob-
tained form the leave-one-out experiments are provided together with p-values based on a paired
t-test by which means the several schemes are compared to each other. Note the improvements
obtained using the schemes employing dimension reduction. The explicit DEf scheme using LDR
provides the best performance overall.

implicit DEf explicit DEf
full LDR full LDR

average 0.513 0.558 0.518 0.621
implicit full

p-value

— 1.8 · 10−3 6.1 · 10−1 8.4 · 10−4

implicit LDR 1.8 · 10−3 — 2.2 · 10−2 2.5 · 10−2

explicit full 6.1 · 10−1 2.2 · 10−2 — 4.6 · 10−5

explicit LDR 8.4 · 10−4 2.5 · 10−2 4.6 · 10−5 —

Based on this the original correlations are ‘normalized’. That is, if rPA is the correlation
between the PA and the soft-tissue image, the correlation score r of a DEf scheme is
normalized to (r−rPA)/(1−rPA): 0 means no improvement with respect to the original
PA chest radiograph, while 1 means a perfect reconstruction of the soft-tissue image.
Table 3 gives the outcome in terms of this normalized measure. In this table the results
when using explicit DEf for inferring soft-tissue images are included and compared to
implicit DEf. Again, the results indicate that the explicit scheme using LDR is better
than all other schemes.

Fig. 3. In the top left-hand corner is the PA radiograph from Figure 1. In the lower right-hand
corner its corresponding soft-tissue image, which is depicted in Figure 1 as well. The top right-
hand image gives the implicit DEf image obtained employing dimension reduction and in the
lower left-hand corner is the soft-tissue image obtained by subtracting the explicit DEf image
from Figure 2 from the original PA chest radiograph in the top left-hand corner.
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Fig. 4. Details taken from the images shown in Figure 3. The patch is taken from the right lung
and contains part of the hilum. The figures are presented in the same order as in Figure 3. Top left-
hand: PA, top right-hand: Implicit DEf, bottom left-hand: Explicit DEf, and bottom right-hand:
Target soft-tissue. The explicit DEf scheme performs better than the implicit one. Furthermore,
the image obtained using explicit DEf seems to be sharper than the actual ground, preserving
non-bony details slightly better.

Figure 2 shows the target bone image and the inferred bone image using the best
performing explicit DEf scheme. In Figures 3 and 4, the best performing implicit DEf
and the best performing explicit DEf schemes are compared to the original PA radi-
ograph and the target image. From these images it appears that explicit DEf performs
better than implicit DEf. Moreover, using explicit DEf, detailed structures seem to be
better preserved than in the target soft-tissue image. However, it is also obvious that
ribs are also not completely filtered out using explicit DEf, leaving quite some room for
improvement.

JSRT data. To see to what extent the trained DEf schemes can be used on PA chest
radiographs obtained from other machines (which is, by the way, a nontrivial task),
the performance of two best performing explicit and implicit schemes (see Table 2)
is further examined using two radiographs from the JSRT database. Both images are
shown in Figure 5. In both images a lung nodule is present in the lower part of the right
lung. The training of the schemes is now carried out using all eight images from the
Chicago data set.

Figures 6 and 7 present—going from left to right in the figures—the original image,
the result obtained using implicit DEf, and the resulting soft-tissue image employing
the explicit DEf scheme, both using dimension reduction.
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Fig. 5. Two chest radiographs from the JSRT database, both containing an obvious lung nodule
in the right lung field

Fig. 6. Top row: Illustration of the results obtained using DEf on an image from the JSRT data-
base. On the left is the original, in the center is the implicit DEf result, and the right image shows
the result employing the explicit scheme. Bottom row: Details from the images in the top row:
The nodule and an area surrounding it. On the left is a patch from the original PA radiograph, in
the center is the implicit DEf result, and the right image shows the result employing the explicit
scheme. (See also Figure 7.)

With respect to filtering out bony structures, both schemes perform rather well. Much
of the rib structures present in the original PA image are completely filtered out or, at
least, removed to a large extent. Again, the explicit scheme provides sharper images
than the implicit one. On the other hand, the latter scheme seems to preserve nodules
better than explicit DEf, which is most apparent from Figure 7.

5 Discussion and Conclusions

The methods proposed, tested, and exemplified in this paper—explicit and implicit dual
energy faking—aim at filtering out bony structures from standard PA chest radiographs
and attempts to infer a soft-tissue image from the latter. The main reason for developing
such schemes is their applicability in computer-aided detection of abnormalities, e.g.
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Fig. 7. Top row: Illustration of the results obtained using DEf on an image from the JSRT data-
base. On the left is the original, in the center is the implicit DEf result, and the right image shows
the result employing the explicit scheme. Bottom row: Details from the images in the top row:
The nodule and an area surrounding it. On the left is a patch from the original PA radiograph, in
the center is the implicit DEf result, and the right image shows the result employing the explicit
scheme. (See also Figure 6.)

nodules or interstitial disease [16,17,18,19], as filtering out bony structures may result
in significant performance improvement.

As illustrated by Figures 3 to 7, the method performs promising on data similar to
the training data but also on radiographs taken from a different data set. The visibility
of the ribs and the clavicle in the lung fields has been reduced considerably in most
parts of the lung fields while other structures have been preserved to a large extent.
Moreover, the correlation between the solutions obtained by kNNR and the soft-tissue
images is very high: Around 0.985 on average (see Table 2). It is noted, however, that
the correlation between the soft-tissue and the PA images is also rather high (0.965),
but the increase in correlation using our technique is obviously significant.

The performance is more clearly illustrated in Table 3 in which the correlation scores
are normalized per image, based on the original PA radiograph. The explicit DEf scheme
which employs the dimension reduction technique is the overall best performing system,
when measured in a leave-one-out experiment on the Chicago data. This latter scheme
preserves image details to a great extent, surprisingly, even more that the target soft-
tissue image. In an attempt to substantiate this observation, correlation scores between
soft-tissue and slightly blurred explicit DEf images were calculated, which indeed led to
a consistent, and (moderately) significant, improvement in average correlation over all
eight Chicago radiographs (p-values around 3 ·10−2 in a paired t-test for scales around
0.45). However, the tests on the JSRT data showed inferior performance on preservation
of lung nodules in comparison with the best implicit scheme.

We notice that a drawback of soft-tissue images, and therefore also of the method
presented, is that they are rather noisy [3]. However, a strong feature of the kNN method
employed is that it could easily incorporate some form of denoising. One of the most
powerful ways to accomplish this is to provide high-dose, and therefore less noisy,
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soft-tissue subtraction images as training material together with the standard PA chest
images. If training is then based on these image pairs, one may be able to learn how
to obtain soft-tissue images from standard radiographs in which, in addition, noise re-
moval has taken place.

A further possibility is to direct research towards using different (more to human
vision related, see [20]) performance measures to optimize the DEf schemes. Agreeing
that in estimating a soft-tissue image from a standard PA chest radiograph, one will
inevitably make errors, the basic idea behind using some other measure to optimize
the schemes is that other errors than the current ones would be made. As an example,
an error measure that would allow for a large amount of noise in the faked image,
but penalizes the presence of large scale edges (i.e., coming from the ribs) might be
preferable over the currently used correlation measure.

While even further improvements of the scheme are probably possible, we may con-
clude that the presented qualitative and quantitative results show that this approach is
able to perform the highly nontrivial separation of bone and tissue components in chest
radiographs. The method is completely automatic and yields satisfying results, even on
data coming from a different source.
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Abstract. We introduce a novel minimally-interactive watershed algo-
rithm that needs no initial parameterization, but lets the user refine the
automatic segmentation close to real-time. In contrast to previous pro-
posals, our algorithm encapsulates all time consuming calculation in a
processing step executed only once. Thereby, a hierarchical subdivision of
the incoming image data is generated. This subdivision serves as a basis
for computing automatic segmentation results according to a given multi-
dimensional classification scheme as well as for interactive refinement ac-
cording to local markers. We have successfully applied our algorithm to
efficiently removing bone structures from computed tomography angiog-
raphy data, which is among the very challenging segmentation problems
in medical image analysis.

1 Introduction

In medical image analysis, an especially challenging problem is the efficient re-
moval of bone structures from large CTA (Computed Tomography Angiography)
image volumes [1,3,5,9,10,11,13,14]. The motivation is to yield an unhindered
view on the vascular structures and inner organs for diagnostic purposes such
as detecting stenoses or aneurysms. The difficulty of the bone removal problem
lies partly in the fact that both osseous and vascular structures show patterns
of highly variable shape and contrast. For example, bone marrow and cortical
bone structures strongly differ in contrast, with bone marrow contrast being
close to average vessel contrast. Vessels, on the other hand, may also exhibit
high intensity patterns resembling those of bone, partly due to high concentra-
tions of contrast agent or calcified vessel plaque. Further segmentation problems
are due to metallic endovascular stents, aneurysm clips etc. Moreover, the close
proximity of bone and vessels, e.g. at the skull base, complicates automated seg-
mentation. Manual bone segmentation is impractical due to the large number of
bones contained in routine CT examinations.

Our general research objective is to provide an algorithmic framework capable
of efficiently segmenting large image volumes with none or minimal user input
based on a set of regional features plus spatial connectivity. Our specific objective
is to provide a software assistant for CTA bone removal being intuitively usable
and moreover being fast and reliable enough for routine clinical applications.
Hence requirements to meet in design and implementation are:

R.R. Beichel and M. Sonka (Eds.): CVAMIA 2006, LNCS 4241, pp. 178–189, 2006.
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– applicability to large data sets in full resolution (current scanners deliver
data sets with, e.g., 512 × 512× 2,000 voxels for runoff studies),

– high degree of automation in removing osseous structures from CTA images,
– speed with max. one minute computation time for a complete automatic

segmentation at the above resolution, and
– intuitive user control with full undo/redo functionality.

In this paper we present a modified watershed algorithm that executes the
computationally expensive steps only once. After a short introduction into the
watershed transform (WT) and its application to segmentation in image process-
ing (Sec. 2), we propose a novel algorithm with improved capabilities (Sec. 3).
We will show how to efficiently collect data for automatic classification during
the WT. The accompanying data structures are explained in Section 3.1. The
reconstruction phase and a simple, yet successful classification schemes based
on the collected data are then delineated (Sec. 3.2) with a prospect of possible
extensions that will improve the classification. Thereafter, we describe the real-
ization of user-interactive refinement by manual markers and their interplay with
the classification result (Sec. 3.3). Experimental results give a good impression
on the performance of our proposal. We detail this in Section 4 and close our
contribution with some prospects of the ongoing research.

2 Related Work

The watershed transform (WT) is today among the most widely used tools for
image segmentation. Originally proposed as an image analysis tool within the
framework of mathematical morphology by Digabel and Lantuèjoul [2], it
was comprehensively recapitulated by Roerdink and Meijster [12].

An n-dimensional grayscale image is interpreted as an n+1-dimensional topo-
graphic relief where the gray value at any image position x = [x1, . . . , xn]T is
interpreted as the elevation at this position. For a two-dimensional image the
interpretation as a relief is shown in Figure 1, where the gray values are either
interpreted as height or depth information. The most important notions are min-
ima, catchment basins (or simply basins), and watersheds separating basins. In
this nomenclature, the WT applied to an image results in a set of basins plus a
set of watersheds.

Standing out in the considerable body of scientific work on the WT is the
1991 TPAMI paper of Vincent and Soille [15], who suggest an algorithm
that allows for extremely fast implementations. Their algorithm follows the idea
of immersion—as opposed to calculation of steepest slope and topographical
distance—of the landscape. The impacts on the segmentation result are for ex-
ample discussed in [5,12].

Only since then the WT yielded practical applicability to the solution of prob-
lems in processing large images. Recently, Roerdink and Meijster published
an excellent overview on definitions, algorithmic implications, and parallelization
strategies [12]. But still are there little, if any, approaches to deal with its major
shortcoming, namely the oversegmentation of images, from within the algorithm.
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Fig. 1. Interpretation of a 2D grayscale image as a 3D topographic landscape. Left:
Axial view, interpretation of gray value as altitude information. Right: Same image,
but coronal view; gray level interpreted as depth information.

Commonly, makers are defined before the WT to avoid oversegmentation. More-
over, image enhancement techniques may be used to preprocess the image, e.g.
to reduce noise, but will lead to a loss of information and/or generality besides
the required computational efforts.

In contrast, our algorithm postpones the handling of noise. During the WT it
builds up a tree-like data structure according to the immersion scenario. Based
on this data structure, noise reduction can then be implemented as a cheap op-
eration that can be interactively influenced by the user. Furthermore, it provides
the possibility to propagate both a priori and user provided knowledge, defined
only on a small number of basins, to other basins. The idea to perform bone
segmentation by applying the WT directly to the original CT data interpreted
as depth information, as opposed to computing image gradients beforehand, was
risen during a study where the individual segmentation of all carpal bones of the
human wrist was required [5,7].

Other contributions to automated bone segmentation in medical imaging
include automated techniques, e.g. [1,3,10,13,14], as well as user interactive
ones, e.g. [1,8,9,11]. The results of fully automated approaches are often mod-
est [10,13], and the interactive ones are often rather simple by design, such as
the one described by Alyassin and Avinash that allows the user to steer global
thresholds [1]. Those techniques, which excel in segmentation performance, often
achieve their specificity at the expense of computation time and/or a restricted
range of applications [8,9]. Most approaches apply manual placing or computa-
tion of regional markers before the WT (e.g. [4]), meaning that the transform
must be recalculated upon each marker change, or they implement costly multi-
resolution strategies.

Probably the closest approach to the one proposed in this paper is the one
of Raman et al. [11], where the user has to point and click on each bone and
vessel only once to segment them. In contrast to [11], our approach contains an
automatic bone classification scheme only requiring a single click by the user if
a bone has not been marked correctly.
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Fig. 2. Left: Depicting the hierarchical WT. The landscape is flooded from bottom to
top. At gray value gf = 31 a ridge point is detected. A merge event candidate m1 is
registered. Right: Final tree structure of merge events after flooding the landscape.

3 Minimally-Interactive Watershed Transform

Classical watershed transform (WT) algorithms allow user interaction only be-
fore the actual WT starts. This severely limits interactivity and is prohibitive in
large images, when refinement by alteration of certain parameters would require
the whole transform to be calculated from scratch.

In contrast, we propose to extend the Interactive Watershed Transform [7],
which provides full user interactivity if desired, but can deliver good results also
without. It comprises a hierarchical Fast Watershed Transform (FWT) and a
user interaction mechanism that works on the data provided by the FWT. The
underlying thought is to transform the image without any beforehand noise sup-
pression and thereafter to provide mechanisms of automatically or interactively
adapting the reconstruction to deal with image noise. This is pursued by em-
ploying a tree-like data structure that is built up during the WT process. Only
in a second step—the reconstruction phase—the user may interfere by varying
global parameters and placing markers to influence the segmentation result. To
avoid the necessity of extensive interaction, a classification scheme places initial
automatic markers according to basin statistics gathered during the WT step on
a per-basin basis.

In the subsequent section we will outline the FWT algorithm. In two further
subsections we will detail the automatic basin classification procedure as well
as the reconstruction phase including the interplay of automatic and manual
markers.

3.1 The Fast Watershed Transform

The novelty of the employed Fast Watershed Transform is in the computa-
tion of a hierarchical representation of the basins found by immersion of the
n + 1-dimensional landscape [7]. Figure 2 shows this for the 1-dimensional case.
Consider incrementally flooding the depicted landscape. Initially, basin b1 is
found. When flooding continues, voxels to the left and to the right of the basin



182 H.K. Hahn et al.

are added to the basin. This is reflected by refreshing the basin statistics in-
cluding the data of the added voxels, which is basically their gray values and
squared gray values. Eventually the deepest point of another basin b2 is found
as an isolated voxel not being connected to any of those belonging to b1. Thus,
a new basin is created, and so forth. The figure shows the detection of the first
ridge point. A merge event from basin b2 to basin b1 is registered and later
evaluated. During flooding, a tree structure of merge events is built up. Fig-
ure 2 right shows the result for the given 1-dimensional example including the
resulting merge event tree, basin list, and list of merge events.

Besides generating the merge tree, for each atomic basin statistical data is
collected. In detail, besides the gray value at the deepest point gseed (in HU), we
record per basin the following data (HU: Hounsfield units):

– mean gray value gmean (in HU),
– gray value standard deviation σ (in HU),
– gray value coefficient of variation CV = σ/gmean (in %), and
– volume V (in ml).

All basins are stored in a vector data structure that is naturally sorted by as-
cending gseed values and that allows fast index access.

Whenever a ridge point is reached, neighborhood considerations tell that this
voxel is connected to more than a single basin and must thus be part of a
watershed. In our implementation, we do not explicitly encode the watershed
voxels but rather add the voxel to the basin of highest priority. Here, priority is
simply associated to the absolute basin depth, which has already shown excellent
results within another field of application [6]. Thereafter, a merge event with the
basin of highest priority is recorded for any further neighboring basin containing
information on the two basins merged by the event and on the gray level gmerge,
at which the merge occurs. Moreover, an index is generated on all merge events
and sorted by ascending gmerge values.

A specialty of the employed WT algorithm is that on each processing step
it only requires information on isolated voxels plus their direct neighbors with
one processing step thus being in complexity class O(1). The WT algorithm as
a whole is therefore in O(n) with n being the number of voxels in the volume.
If only a small subset of the voxels are of interest for the given segmentation
problem—and this is the case regarding the high intensity voxels for the CTA
bone removal problem—we therefore propose to use a sparse sampling of these
voxels, resulting in a dramatic image compression. Commonly, one can assume
to find about 2% to 5% of voxels representing bright vessel or bone structures,
easily justifying a compression of image data to 25% the original size.

In the following, the WT will work on the sparse representation of bright
image elements that fall above a given threshold. The input threshold for our
problem has a 175 HU default value but could changed for specific applications.
This choice is motivated by the experience that cortical bone structures that
hinder the view on vascular structures will usually show up in CT with at least
175 HU, while a huge amount of soft tissue that can be disregarded here shows
up at less than 175 HU. Of course, a further compression and speed-up could,
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e.g., be effectuated by simply downsampling the incoming data by a factor of
two for each slice before processing, which is often acceptable based on the high
in-plane resolution of current CT scanners.

3.2 Automatic Pre-classification and Reconstruction

The basin statistics collected during the FWT suffices to provide an initial seg-
mentation that can be later refined by the user. Our objective was to satisfy the
following criteria with respect to the employed classification scheme:

– be fast : use the collected data per basin efficiently,
– be modular : allow for arbitrary classification algorithms, and
– be extendable: allow for new per-basin or higher-order features.

Our experiments regarding CTA bone removal showed that—given the basin
statistics described above—even a simple classification scheme operating on the
statistical data performs considerably well for inside (i.e. bone) as well as for
outside (i.e. non-bone) classification. Before actually classifying voxels as bone
or none bone, simple thresholding on basin size models the assumption that
bone structures will not tend to be smaller than a minimum volume (default:
Vmin = 0.5 ml). Our classification scheme is then best depicted by two ellipses
in the feature space spanned by CV vs. gmax (cf. Fig. 3 right for an illustration
of the ellipse used for bone labeling). All feature points that fall between the
inner (bone) and the outer (non-bone, not shown) ellipses will initially remain
unlabeled. The use of CV as a derived basin feature was motivated by visual
inspection of a plot of σ vs. gmean (Fig. 3 left).

The incorporation of new features can be performed in a straightforward man-
ner and is only limited by memory constraints. Each per-basin feature has to be
stored within the basin data structure, and since all basin data is kept in main
memory for interactive rework, one should think carefully before adding new
features. Given that the feature is incrementally computable during the FWT
computation, the increase in computation time can be neglected. Also, features
that are related to merge events, final basin depths etc. may be considered and
are subject to our ongoing research.

Moreover, in our current experiments we substituted the simple elliptic classi-
fication scheme by a support vector machine that was trained on expert segmen-
tation results. With this classification the results ameliorated, but as thorough
exploration is pending, a more detailed analysis is left to our future research.

Whatever classification utilized, it will store markers in a number of basins,
for which the feature vector falls within the inside/bone or outside/non-bone
region of the decision function. Note that an arbitrary number of basins may
be marked by the classification scheme. Neither are all basins required to be
marked, nor is there an upper limit to the number of marked basins. In the
following discussion, denote the marker of a basin by bmarker. Markers can be
either of include, exclude or explicitly none of the previous, denoted min, mout,
and mno, respectively.



184 H.K. Hahn et al.

Fig. 3. Left: Comparing gmean to σ for all basins larger than Vmin from 14 data sets,
the (green) crosses representing bone, all other symbols representing non-bone. Right:
Classification scheme region (ellipse) for generating automatic bone markers. Only 47
false positives are inside the ellipse.

3.3 Marker-Based Interactive Segmentation

The markers provided by the classification scheme alongside those given by the
user are employed to construct the segmentation result. Therefore, the treelike
structure of basins is traversed by ascending gray levels of merge events as they
were recorded during the watershed transform.

The markers are propagated to adjacent basins on behalf of the following
algorithm. Let Base(b) be a function returning the deepest basin connected to
b, initially returning the basin itself. Think of a merge event as a ridge point, at
which a directed slopping over of fluid from one basin into another occurs. The
direction is defined to come from the shallower basin and flow to the deeper one.

Denote with bfrom the basin, from which the fluid flows, and with bto the
target basin. Then, the marker propagation works as described by Algorithm 1.,
which, however, is a condensation in that in the actual implementation works
only on those basins not already merged according to a user defined preflooding
level. The concept of preflooding within the WT was introduced in [6].

The reconstructed image is presented to the user who may refine it interac-
tively. Practically, this means clicking on image positions that are segmented
false positive or false negative, thereby assigning include or exclude markers to
the respective basins. Another option for the user is to modify global classifi-
cation parameters, whereafter the classification step is repeated for all basins.
In case the user places one or more markers manually, Algorithm 2. helps to
reconstruct the image for both manual and automatic markers. When evalu-
ating manual markers, basins without explicit manual markers are filled with
automatic markers, if present (lines 5–6).

With this provided, the calculation of all markers is done by a simple call of
computeLabel(basini) in a loop over all basins.Additionally, to obtain fullundo/
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Algorithm 1. mergeAll(): Propagation of inside and outside markers in basin
list.

1. for all mergeeventi ∈ mergelist, i ∈ [1...m] do
2. if (bfrom)marker �= mno then /* Marker present in bfrom. */
3. if (bto)marker = mno then /* No marker present in bto. */
4. Base(bfrom) := Base(bto) /* Merge and propagate marker. */
5. Base(bto)marker := Base(bfrom)marker

6. else if Base(bfrom)marker = Base(bto)marker then /* Markers identical. */
7. Base(bfrom) := Base(bto) /* Merge only. */
8. end if
9. else /* No marker in bfrom. */

10. Base(bfrom) := Base(bto) /* Merge only. */
11. end if
12. end for

redo functionality is suffices to simply keep track of all user input, i.e. marker place-
ment/deletion and parameter changes. Reverting to a previous state only involves
re-evaluation of the comparably inexpensive computeLabel(basini) with the list
of markers and parameters of the respective state.

4 Results

To show the speed during interaction we evaluated the performance on six real-
world data sets of different size from various multidetector CT scanners. In
order to qualitatively assess the results of our segmentation, Figure 4 shows
two of these data sets using direct volume rendering of the original data, of
the removed bone structures, and of the data after bone removal (from left to
right). Table 1 lists the data sets in terms of slice thickness and image size
and provides timing results. We would like to focus the attention on the right-
most column giving the time in seconds required to transform a user input, i.e.
any marking of image regions as bone or non-bone, into a new segmentation
result.

In the table, column 2 lists the initial size of the data set. After compres-
sion, the sparse volume representation of the data sets consist of a maximum of
roughly 10 000 000 voxels. From these voxels, a number of basins are formed (col-
umn 3, �basins). The number of basins depends on image characteristics and is
not linear in the image size. The time for setting/unsetting an arbitrary number
of markers (column 7, tmarker) depends on the number of basins.

From Table 1 note that all interaction time is well below 1 s, even for data
sets as large as 430 MVoxels (Runoff ). Also note, that neither the number of
basins found in a particular image is a function of image size, nor is the time for
interaction. The number of basins depends on a variety of image characteristics,
whereas the time for interaction depends on the number of basins only and is
thus related to image characteristics as well.
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Algorithm 2. computeLabel(mode ∈ {auto, manu}): Determination of auto-
matic and manual markers for one basin.

1. l := bmarker

2. if l = mno then /* No marker set yet. */
3. if Base(b) �= b then /* Recurse until self-reference. */
4. computeLabel(Base(b))
5. else if mode = manu ∧ bautomarker �= 0 then
6. l := bautomarker /* Copy automatic marker to manual. */
7. else
8. l := mout /* Assign outside marker */
9. end if

10. bmarker := l
11. end if
12. return l

For example, two almost equally large images (Extremity and Cup) lead to
the biggest and the smallest number of basins, respectively, and as a consequence
to quite different interaction times. Conversely, Runoff as the biggest data set
by number of voxels does not stand out in any particular way.

Contrasting this result, it is obvious, that compression time (column 5, tcomp)
mainly depends on the size of the data set, which is discernible by the data given.
The deviations from linearity are mainly due to the number of voxels stored
above the threshold. Finally, the segmentation time (column 6, tseg) depends on
the number of voxels after compression and on their spatial compactness.

In Table 2, we explore the impact of the number of basins on user interactivity
in more detail. The algorithm was forced to deliver decreasing numbers of basins
by altering an input threshold on the image. For ease of reading we provide
relative measures for number of basins and number of merges with respect to the
number of voxels in the compressed volume (3rd and 5th column, respectively).
Also, we scaled the time measured for marker setting and resetting to a value
corresponding to 1,000,000 input voxels (rightmost column, � = tmarker·106voxels

�voxels
in ms). It is discernible that all measured parameters are roughly linear with
respect to the number of voxels (3rd, 5th, and 7th column).

Table 1. Dependence of interaction time on number of basins. Table sorted by number
of basins. d is the slice thickness in mm.

Id. d Size �basins tcomp tseg tmarker

Heart 0.4 512 × 512 × 368 112,221 10.39 s 16.32 s 0.08 s
Patient III 2.4 512 × 512 × 210 285,566 4.99 s 9.93 s 0.22 s

Runoff 0.9 512 × 512 × 1637 292,462 42.37 s 17.96 s 0.21 s
Thorax 1.2 512 × 512 × 559 308,982 12.87 s 14.72 s 0.24 s

Cup 1.5 512 × 512 × 763 450,631 14.58 s 18.68 s 0.32 s
Extremity 1.5 512 × 512 × 790 752,445 13.55 s 17.84 s 0.57 s
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Fig. 4. Direct volume rendering of data sets Runoff (top) and Thorax (bottom). From
left: Original data; bone structures; soft tissue (i.e. original data after bone removal).
Note that stents in the top image series are correctly not segmented as bone, but are
shown in the soft tissue image. Even a novice user was able to segment the whole 1637
slices CTA scan in about two minutes.



188 H.K. Hahn et al.

Table 2. Performance measured against different numbers of basins. Data set Patient
III with a size of 512 × 512 × 210 = 55, 055, 240 voxels.

�voxels �basins �basins
�voxels �merges �merges

�voxels tmarker �

5,208,879 285,566 5.48 278,433 5.35 220 ms 42.2 ms
4,885,864 277,215 5.67 266,619 5.46 210 ms 43.0 ms
4,543,215 266,898 5.87 256,983 5.66 220 ms 48.4 ms
4,149,390 256,958 6.19 245,955 5.93 200 ms 48.2 ms
3,669,954 244,160 6.65 229,456 6.25 190 ms 51.8 ms
3,117,635 223,086 7.16 201,422 6.46 160 ms 51.3 ms
2,600,122 189,320 7.28 160,827 6.19 130 ms 50.0 ms
1,319,828 82,214 6.23 66,453 5.03 50 ms 37.9 ms
1,136,652 64,149 5.64 53,932 4.74 40 ms 35.2 ms
1,006,119 50,660 5.04 43,484 4.32 40 ms 39.8 ms

925,170 41,649 4.50 37,132 4.01 20 ms 21.6 ms
872,831 36,860 4.22 34,173 3.92 20 ms 22.9 ms
831,960 34,349 4.13 32,656 3.93 30 ms 36.1 ms

5 Conclusion

The proposed method provides a coherent hierarchical watershed transform with
a high numerical efficiency. It is minimally-interactive in the sense that in an op-
timal case, no user interaction is required, and in other cases, only single mouse
clicks are required to correct misclassified three-dimensional objects. Besides be-
ing fast, the method is modular in that it allows to replace the multi-dimensional
classification engine by an arbitrary algorithm and it is extendable in that the
set of features can easily be complemented by further per-basin statistics. Even
though the current results only cover the field of CTA image segmentation, the
basic algorithmic strategy of combining the interactive watershed transform with
a trainable classification scheme is generic and expected to be applicable to a
wide range of image segmentation problems.
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Abstract. The function of the human brain arises from computations
that occur within and among billions of nerve cells known as neurons. A
neuron is composed primarily of a cell body (soma) from which emanates
a collection of branching structures (dendrites). How neuronal signals are
processed is dependent on the dendrites’ specific morphology and distri-
bution of voltage-gated ion channels. To understand this processing, it
is necessary to acquire an accurate structural analysis of the cell. To-
ward this end, we present an automated reconstruction system which
extracts the morphology of neurons imaged from confocal and multi-
photon microscopes. As we place emphasis on this being a rapid (and
therefore automated) process, we have developed several techniques that
provide high-quality reconstructions with minimal human interaction. In
addition to generating a tree of connected cylinders representing the re-
constructed neuron, a computational model is also created for purposes
of performing functional simulations. We present visual and statistical
results from reconstructions performed both on real image volumes and
on noised synthetic data from the Duke-Southampton archive.

1 Introduction

Brain function is based on the computation that occurs concurrently within
and among nerve cells, where information from thousands of synaptic inputs is
received at the dendritic spines and processed by the dendrites’ specific morphol-
ogy and distribution of voltage-gated ion channels. In order to analyze dendritic
interaction, we require computational models of the neuron which incorporate
relevant morphological features (i.e., dendritic structure). Building such models
has been difficult in the past as technical considerations have dictated that neu-
ronal structure and function be acquired separately. However, recent advances in
optical imaging allow us to image the structure of living nerve cells and perform
multi-site recording of neuronal function during a single experiment. Neverthe-
less, the choice of sites for functional imaging must still be made. Ideally, the
operator would be able to choose recording sites based on an online simulation
of the nerve cell under study; this would enable the selection of optimal sites for
further hypothesis testing. Such a simulation requires that structure be imaged,
a morphological reconstruction be performed, and a compartmental model of
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(a) (b)

Fig. 1. (a) A set of overlapping image stacks comprising one volume and (b) a volume
denoised using our method, with typical features labeled

the neuron be created, all during the short time frame of an acute experiment.
Unfortunately, the current state-of-the-art in this area is far from capable of
generating the necessary reconstruction within this time limit: manual recon-
structions may take days to weeks to produce accurately (and still suffer from
inter- and intra-observer variability) while most automated or computer-aided
methods take many hours.

In this paper, we describe our contributions toward a rapid, fully automated
system [1]. In addition to describing the overall framework, we will introduce
novel methods including (1) an automated pipette1 remover and soma picker that
eliminates the need to manually delineate the soma, (2) a fast skeletonization
algorithm that obviates the need for user-selected seed points or other initializa-
tion, and (3) a module that interacts with the NEURON [2] software package to
allow an operator to select dendrites from the resulting reconstruction in 3-D in
order to view functional simulations for particular branches.

The remainder of this paper is organized as follows. Section 2 presents an
overview of previous work, Section 3 describes the data to be processed and the
methods we use to accomplish reconstruction, and Section 4 discusses our results
and validation.

2 Previous Work

Manual Reconstruction Methods: The vast majority of reconstructions are
currently performed by computer-aided, but still inherently manual, measuring
systems such as Neurolucidatm. With such a system, a single neuron recon-
struction may require ∼6-8 hours of manual effort without accurate dendrite
diameters and over a week otherwise. Consequently, such methods are almost
prohibitively tedious while still being subject to user error and bias.

Full Reconstruction Algorithms: Al-Kofahi et al. [3] describe a reconstruc-
tion scheme which uses an adaptive exploratory search at the voxel intensity
level. This method uses directional filters which assume no preprocessing and

1 Used to inject fluorescent dye, this appears as a connected “part” of the neuron that
can create erroneous reconstruction results if not carefully removed.
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is thus well-suited mainly for images with minimal noise or other acquisition
artifacts. Dima et al. [4] present an approach to neuron segmentation using a
3-D wavelet transform to perform a multiscale validation of dendrite boundaries.
This segmentation is used to construct a skeleton complete with an estimate of
local axial directions and their variances, which are then used to locate bifur-
cations. Their results show gaps in the skeleton, for which they plan to add a
manual correction option. No timings are provided to gauge the efficiency of this
technique. Uehara et al. [5] describe a neuron reconstruction algorithm based on
a wave propagation methodology. Using gradient eigenanalysis, the algorithm
generates a field indicating the probability of each voxel belonging to a cylin-
drical structure (assumed to be dendritic). A digital wave is then propagated
through this field to provide dendrite paths. However, the multi-scale gradient
analysis used here is prohibitively expensive for large volumes.

3 Materials and Methods

Acquisition: The data are obtained using confocal or multi-photon microscopes
through optical serial sectioning along the optical axis. Cells are either loaded
with Alexa Fluor 555 or 488 dyes or are taken from a line expressing enhanced
green fluorescent protein. The acquired stack of images have a resolution of
∼ 0.3 µm2 in-plane, a voxel aspect ratio of about 1 : 1 : 3 when considered as a
volume, and dimensions of around 1024× 1024× 200 voxels. A complete neuron
volume is comprised of three or more such overlapping stacks (Fig. 1(a)). The
current cells of interest are CA1 pyramidal cells from mouse or rat hippocampus,
though we plan on reconstructing other cell types in the future. The salient
features of our volumes are illustrated in Fig. 1(b). For the remainder of this
paper, the z-axis will refer to the axis parallel to the optical axis, while the x-y
plane will refer to the imaging plane.

The major challenges posed by these datasets are: the 3-D point spread func-
tion imposed by the optics of the microscope, variable contrast due to uneven dye
distribution within the cell, thermal noise, photon shot noise, the presence of a
prominent (but irrelevant) pipette in the image volume, and the fact that many
features of interest (i.e., thin dendrites) are at the limit of imaging resolution.
These issues will be discussed further where appropriate.

Algorithm Overview: The algorithm is executed sequentially using the steps
below; a detailed description of each step follows.
Step 1: Register and combine the multiple image stacks into a single volume.
Step 2: Deconvolve and denoise the volume.
Step 3: Select a grey-level threshold which segments the neuron.
Step 4: Remove the pipette from the neuron object.
Step 5: Skeletonize the neuron object to extract its medial axis tree.
Step 6: Convert the medial axis tree to a tree of tapered cylinders.
Step 7 : Output (i) neuron morphology statistics, (ii) data representing the tree
structure of the neuron, (iii) a simulation model understood by the simulation
software NEURON, and (iv) a polygonal 3-D model.
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Step 1: In order to obtain adequate resolution over the entirety of the neuron,
the cell is scanned in multiple segments and stored in several image volumes.
These volumes are registered and combined into a single volume before further
processing. To accomplish this, first, the experimenter supplies estimated x, y,
and z offsets between each stack; these are obtained when the microscope’s area
of acquisition is translated from one region of interest to the next. Maximum
intensity projections along the x- and z-axes of each stack are then computed.2

Next, 2-D registration is performed on the mutually-overlapping regions of these
images for each pair of stacks, where registration on the x-axis projections pro-
vides the needed y and z offsets and registration on the z-axis projections pro-
vides x offsets. Finally, these transformations are applied to each image volume
as they are placed into the single large volume used for further processing.

To measure the similarity of the projections during registration, we use the
mean squared difference metric. This is minimized using limited-memory Broy-
den Fletcher Goldfarb Shannon (BFGS) minimization with simple bounds [6,7].
This algorithm is designed to solve large, non-linear optimization problems when
the objective function gradient is available. It uses a limited-memory BFGS ma-
trix [8] to approximate the Hessian of the objective function, thereby eliminating
the need to calculate second derivatives for large-scale problems. Additionally,
it allows for translations as well as rotations, both of which are bounded here
using parameters set by the experimenter.

We have noted that the pipette may appear to be in slightly different positions
between stacks as a result of parallax effects due to the differing orientation of
the microscope and subject between stack recordings. As this effect may skew
the registration results, the experimenter is given the option to review the regis-
tration results: a projection of the aligned stacks is presented and, if necessary,
the stacks may be registered again with a smaller search space.

Step 2: Due to the 3-D point spread function (PSF) imposed on the data by the
optics of the microscope, our image volumes are inherently blurred, especially
along the z-axis where the image is distorted (elongated). To alleviate this effect,
an experimental PSF is estimated by performing an imaging experiment on a
volume of sparsely-scattered latex beads (diameter: ∼ 0.2 µm) which are ab-
sorptive of the fluorescent dye used in these experiments. These beads simulate
ideal point light sources; by averaging many of them (∼ 15), a robust estimate
of the microscope’s PSF may be obtained (Fig. 2). This PSF is then used to
deconvolve the 3-D image using a standard maximum-likelihood method.

Due to the poor signal-to-noise ratio of confocal imagery, one of the steps nec-
essary to accomplish an accurate segmentation is a denoising that can effectively
remove high frequencies associated with noise while preserving the details of fine
structures. To accomplish this, we have developed a non-separable 3-D Parse-
val frame based on a 1-D piecewise linear spline tight frame. Our frames-based
approach operates by a statistical analysis of an ensemble of thresholds associ-
2 Use of the x-axis projections assumes that the stacks align along the y-axis. If they

align horizontally, the y-axis projections are used instead.
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(a) (b)

Fig. 2. Experimental PSF derived from bead data: (a) x-y plane and (b) x-z plane

ated with frame coefficients. Our approach to denoising differs from the classical
wavelet approach in the following ways. First, unlike wavelets, the frames trans-
form allows some redundancy in the signal since the 3-D Parseval frame is not a
basis for the set of 3-D digital signals. Hence, when frame coefficients associated
with noise are removed, their information content is not entirely lost, providing
a more accurate signal reconstruction. Second, the frame transform is undeci-
mated; there are no sampling operations to decompose the signal. This leads to
more reliable localization of high-frequency components compared to wavelets,
where the size of the signal is subject to change. Finally, the same frame used
to decompose the signal is used to reconstruct it [9,10].

Step 3: Following denoising, we employ the grey-level thresholding technique
of Otsu [11] to binarize the denoised data. In this context, the frames-based
denoising is essential to producing the reliably bimodal histogram which many
thresholding methods, including Otsu’s, require.

Step 4: The two brightest features in the neuron image stack are the soma and
the pipette through which dye is injected during the imaging process. Because
these two features are in direct contact with each other, it is necessary to first
segment the combined soma/pipette object from the volume and then separate
these objects from each other. These steps are performed as follows.
Soma/Pipette Extraction: We calculate an additive projection Pxy with respect
to the x-y plane of the image volume. An initial estimation of the soma/pipette
region is found by applying a threshold Txy to Pxy, where Txy is proportional to
max(Pxy). The extreme brightness of the soma/pipette object guarantees that
the segmentation contains our object of interest. We fit an ellipse to the resulting
segmentation to robustly estimate a bounding box containing the soma/pipette
object. The bounding volume by default always contains the entire z-axis.
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Soma/Pipette Separation: Given the subvolume bounding the soma and pipette,
it is necessary to determine a cutting plane with which to separate the two
objects. This plane ideally transects the “neck” or narrowing between the soma
and pipette (Fig. 3(a)). Following this we also aim for complete removal of
the pipette from the binary volume containing the segmented neuron; hence, in
this section we operate solely on the binary representation of the soma/pipette
subvolume.

Given the matrix containing the coordinates for the voxels representing the

combined soma/pipette object, A =

⎛⎝ x1 y1 z1
. . .

xn yn zn

⎞⎠, where each row represents

the coordinates of one voxel, we find its 3 × 3 covariance matrix, CA. The
principal eigenvector of CA, v1, indicates the direction of the medial axis of the
combined soma/pipette object while the columnwise mean of A, GA, indicates
its center of gravity. The medial axis may then be parametrized by M(t) =
GA + tv1. Scanning the binary subvolume along M(t), we find the bounds,
tα and tβ , of t such that these delineate the bounds of the soma/pipette object
along M(t). Since the vector v1 may point in either direction along the object, we
must then find the direction from the pipette base toward the soma. The distance
transform (DT) is applied to the binary object, which indicates the minimum
distance from any point in the soma/pipette object to its boundary. The DT
values along M(t) are extracted, giving the scalar function D(t) = DT[M(t)]. An
outlier-rejecting least-squares fit is applied to D(t); the slope of this fit indicates
in which direction along the pipette the line M(t) points, as D(t) decreases
toward the narrow end of the pipette. Next, tα and tβ are exchanged if necessary
to provide the bounds for M(t) and D(t) such that M(tα) is at the pipette base
(i.e., its thickest point) and M(tβ) is where the soma/pipette object terminates
(i.e., on the side of the soma opposite the pipette). The function D(t) is then
used to determine the location of the neck, as it produces a peak near the soma
and a gradual slope along the length of the pipette. In particular, the function
is smoothed with an approximating spline to eliminate aliasing, and the linear
fit computed previously is subtracted to accentuate the location of the neck and
soma. Finally, the neck is located at the trough with the highest gradient to its
right, in the parametrization of Fig. 3(b). The location of the neck is M(tγ),
where tγ ∈ [tα, tβ ] (though we can usually expect that |tγ − tβ | < |tγ − tα|).

Once the neck-centered voxel is found, the two eigenvectors perpendicular to
v1, along with the point M(tγ), will define a cutting plane. Using this plane, the
voxels representing the pipette are removed from the binary volume (i.e., they
are set to zero).

Step 5: To extract the medial axis of our segmented neuron, we employ a
DT-based skeletonization method inspired by the penalized-distance algorithm
of Bitter et al. [12]. This algorithm produces a skeleton that is guaranteed to
be tree-structured: one of the requirements for neuron reconstruction. Our im-
plementation includes three modifications to the original method. Firstly, the
algorithm was not designed for thin objects, yet most of the dendrites we are
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Fig. 3. (a) Binary soma/pipette object with detected medial axis line and arrow indi-
cating “neck;” (b) raw distance signal D(t) with linear fit (solid lines) and smoothed
fit-adjusted signal (dotted line). The peak in (b) represents the soma location.

interested in are of low apparent width due to their being near the limits of our
imaging resolution. To alleviate the problems this induces, the voxel flagging
portion of the algorithm was modified to include a larger number of potential
centerline candidates before the DT vector field tracing begins.

Secondly, the various intermediate penalized-distance and “sphere rolling”
fields are updated on an iterative, local basis, reducing the time needed to main-
tain these fields.

Thirdly, we use information from the skeletonization process to intelligently
cull false dendrites from the neuron. In particular, it may be possible that long
false-positive dendrites are detected which merely originate from surface noise,
while at the same time there may exist short dendrites which belong to legitimate
branches. Many reconstruction algorithms cull false-positive branches in the post-
skeletonization stage based solely on their length. However, by using intermediate
information from the skeletonization process, we are able to obtain a measure of
saliency related to how much a branch contributes to the volume of the object.
That is, if the neuron is represented by its “skeletal reconstruction” (i.e., the object
generated by rolling over the skeleton a sphere whose diameter varies by the DT
function), a dendrite’s saliency is defined as the length of the dendrite that lies
outside the skeletal reconstruction produced by all other dendrites. Once a branch
is marked to be culled, it is culled only if it has no children; hence the culling
process is multi-pass as children are culled, their parents checked for saliency and
culled, etc. This process is rapid as all necessary information is gathered during
the skeletonization process.

Step 6: The skeletonization process returns a tree of paths representing the
medial axes of the salient branches in the binarized neuron volume. In addi-
tion, a distance transform (DT) volume is generated as a byproduct. Due to
the aliasing inherent in the generated voxel-resolution paths, an approximating
spline is fit to each path before further processing. The only information now
lacking to create a complete cylinder-tree representation of the neuron is a func-
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tion describing dendrite widths along each spline. Given a single spline path,
P (t) parametrized with t ∈ [0, 1], this width function is determined as follows. A
series of small (e.g., 5-15 voxel) planes are sliced from the DT volume at multiple
sample points along P , where the planes’ normals are the tangent of P at each
point. From each slice i, the width function, w(i), is defined as the maximal DT
value in the slice by gradient ascent from the center of the slice image. (Gradi-
ent ascent accounts for slight deviations from the medial axis due to the aliasing
correction.) To provide a more accurate and higher-resolution width estimate, a
least-squares linear fit3 is then made to w to give function w′. Finally, the curve
P is discretized adaptively (i.e., to a greater extent in areas of high curvature and
to a lesser extent elsewhere) to generate a line-segment description of each path.
At each line segment start and end point, the continuous function w′ is sampled
to provide radii for the start and end caps of the tapered cylinder representing
that segment.

Step 7: The outputs of a complete reconstruction include morphology statistics,
a geometric model, and a simulation model. The morphology statistics describe
the following properties: branch angle, or the angle by which each branch deviates
from its parent; branch radius, or the number of branch points in the neuron
versus their radial distance from the soma (e.g., Fig. 6(a)); and dendrite length,
or the number of branch points in the neuron versus their path-length distance
from the soma (e.g., Fig. 6(b)) [13]. Also included are Rall’s ratio versus branch
order and Rall’s ratio versus branch thickness [14].

A polygonal 3-D model is output in the standard Autocad DXF format.
In addition, a cylinder-based description is output in a variation of the Duke-
Southampton SWC format [15] which allows the representation of tapered cylin-
ders. A simulational model is output in the HOC format expected by the simu-
lation package NEURON [2].

4 Results

Figure 4 depicts a synthetic volume, its skeleton, and its cylindrical reconstruc-
tion, along with detailed views of each. Figure 5 displays the user interaction
window for the results of a reconstruction performed on a real dataset, along
with a figure displaying voltage and calcium current versus time for a particular
branch. Figure 7 illustrates real data at four different points in the processing
pipeline. Denoising is also illustrated in Fig. 1.

Reconstruction accuracy is determined using synthetic volumes created with
SWC morphology data from the Duke-Southampton archive [16]. Each of these
datasets encodes the cylinder-tree structure of a single neuron. Our ground-truth
volumes are created as follows. A binary volume is generated from the SWC file

3 The assumption made here is that dendrites either remain the same thickness or thin
consistently toward their extremities; they cannot, e.g., thicken and thin repeatedly.
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Fig. 4. From left to right: synthetic data reconstructed from an SWC file (with added
noise), the extracted skeleton, and the 3-D cylindrical reconstruction

Table 1. Maximum and mean voxel error for four representative test cases

Cell Name Amax Amean Bmax Bmean

n125 6.325 0.680 3.606 0.136
n142 3.317 0.448 5.477 0.368
n414 3.162 0.183 3.000 0.324
n418 3.162 0.295 5.385 0.346

and artificially corrupted by additive Gaussian noise (σ = 10) and uniformly-
distributed multiplicative noise (σ = 20). Reconstructions are then compared as
follows. Given the ground truth volume A and our reconstruction B, we measure
both (a) the volume of the object in A unaccounted for by the object in B (false
negatives) and (b) vice-versa (false positives). Due to the sparsity of the binary
neuron volumes, a global voxel-by-voxel comparison provides meaningless statis-
tics. Instead, we report the maximum deviation between the objects in cases (a)
and (b) (Amax and Bmax in Table 4) and the average deviation over the extent
of the objects in cases (a) and (b) (Amean and Bmean). In all cases, distances are
measured in voxels.

Our software requires 7-10 min to complete a reconstruction on volumes of the
order 106-107 cubic voxels using a standard Windowstm workstation. In addition,
we have reconstructed volumes of up to 1100×3100×220 voxels (∼ 7.5×108 cubic
voxels) on an 8-way Linuxtm cluster with 32 Gb of physical memory.
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Fig. 5. Simulation viewer displaying voltage and calcium current versus time for the
highlighted branch

(a) (b)

Fig. 6. (a) Branching radius and (b) dendrite lengths from one test case

5 Discussion

We have presented a tool implementing a suite of algorithms tuned specifically for
rapid, robust, and automated reconstruction of dendrite morphology from optical
section stacks. The output provides statistics about the neuron’s structure as well
as models that can be used for simulation and visualization. The tool presents a
significant improvement over previous methods as well as a major step toward
online reconstruction of dendrite morphology (i.e., during the lifespan of the cell
being imaged): a critical capability for future functional experimentation.

We plan to expand our denoising framework to handle apparent dendrite
gaps in order to alleviate the “missing branches” problem that plagues many (if
not all) existing reconstruction algorithms. This problem is induced by uneven
distribution of fluorescent dye within the neuron and can lead to the truncation
of dendrites within the reconstructed model.
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(a)

(b)

(c)

(d)

Fig. 7. Real data (a) immediately following acquisition, (b) following deconvolution,
(c) following denoising, and (d) following reconstruction (i.e., the final cylinder-tree
representation)
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9. Konstantinidis, I., Santamaŕıa-Pang, A., Kakadiaris, I.A.: Frames-based denoising
in 3D confocal microscopy imaging. In: Proc IEEE EMBS. (2005)
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Abstract. A novel approach is presented for modeling the complex activity pat-
tern of the heart in echocardiogram videos. In this approach, the heart is repre-
sented by the constellation of its chambers, where the constellation is modeled
by pictorial structure at each instance in time. Pictorial structure is then extended
to the temporal domain to simultaneously capture the evolution pattern of the ap-
pearance of each chamber, the evolving spatial relationships between them, and
the topological transformations in their constellation due to phase transitions. In-
ference and learning algorithms are presented for the model. The problem of
correspondence is solved at each stage of the inference process, by matching the
evolving model of the complex activity pattern to the observed constellations.
The model, which is trained using examples of normal echocardiogram videos is
shown to be efficient in temporal segmentation of the content of echocardiogram
videos into different phases during one cycle of heart activity.

1 Introduction

Figure 1 illustrates a typical activity pattern of the collection of cardiac chambers during
one cycle of the operation of a normal heart in apical four chamber view [1]. Each phase
corresponds to a different state of the heart function determined by the collective state
of the cardiac valves. At phase boundaries, certain valves either open or close, which
result in a change in the topology. Within each phase, the appearance characteristics of
the chambers evolve, for example, in the first phase right ventricle gradually contracts.

In this paper, our goal is to provide a novel approach for the analysis and modeling
of such activity patterns. This is motivated by the need for efficient tools for automatic
indexing of the archived echocardiogram videos for better content management. In our
earlier work [2], we presented an approach for automatic view recognition in echocar-
diogram videos, which provided access to the content of these videos at the view level.
Here, we would like to provide the capability to access the content of the echocardio-
grams at the level of cardiac phase boundaries. In addition to the video indexing moti-
vation, models created from the normal patterns of the heart activity could be leveraged
for classifying cycles of different echocardiograms into normal and abnormal cases,
based on the collective behavior of the cardiac chambers throughout one cycle of the
heart activity. This forms the basis of our future work.

R.R. Beichel and M. Sonka (Eds.): CVAMIA 2006, LNCS 4241, pp. 202–213, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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<Phase 1> <Phase 2> <Phase 3>

Fig. 1. Sequence of echocardiogram frames showing three phases of heart operation in apical
four chamber view. (Note: Chambers are color coded for illustration purposes.)

In our description of the activity pattern of the heart (Figure 1), we alluded to the
representation of the heart by the collection of its chambers. There is a broad consen-
sus for representing classes of objects using the assembly of their parts [3,4], where
parts can be either image patches or features. In the example above, parts are blobs
corresponding to cardiac chambers. Pictorial structures [4] is a popular way to model
classes of objects represented by the constellation of their parts with a single flexible
template, which captures both the appearance characteristics of each individual part and
the geometrical characteristics of their assembly.

Activity as described above, when applied to an instance of an object class modeled
by pictorial structures translates into 1- deformations in the spatial relationships be-
tween the parts (geometrical), 2- change in the number of parts throughout the activity
(topological), and 3- metamorphosis of the appearance of the individual parts during the
course of the activity. We propose here the extension of the notion of pictorial structures
to the temporal domain for modeling the complex activity pattern of the constellation
of cardiac chambers.

In this model, we assume that during each phase of the activity, parameters of the
pictorial structure pertaining to individual parts and their spatial relationships evolve ac-
cording to a Gauss-Markov process. We also assume that at phase boundaries, pictorial
structure experiences a topological transformation, due to merging or splitting of the the
parts according to pre-defined semantics. No assumptions are made regarding the avail-
ability of specialized part detectors, or labels of the parts, such as the ones available in
motion capture data sets. At each time instance, the evolved pictorial structure is used to
find the correspondence information for an observed constellation of parts in the image.

A dynamic Bayesian network (DBN) in the form that is a variation of the switched
linear dynamic system (SLDS) [5] is used to capture the causal relationships among the
characteristics of the evolving model of the object, the observations, and the correspon-
dence information. Learning the parameters of this model and therefore the model of
the activity pattern of the object is done using the expectation-maximization [6] proce-
dure. The expectation step or equivalently the inference is performed using a modified
form of the Viterbi algorithm.

The contributions of this paper are:

– Extending the notion of pictorial structures to the temporal domain,
– Solving the correspondence problem at each step of the algorithm in a holistic

approach by matching the evolved model of the object to the observed constellation
of parts,
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– Applying the proposed scheme to modeling the complex activity pattern of the con-
stellation of cardiac chambers, for the purpose of indexing the content of echocar-
diogram videos at the level of their constituent temporal units.

The proposed approach is distinct from the prior art, mainly due to the fact that it al-
lows topological transformations in the model of the constellation and more importantly
solves the correspondence problem on the fly using the model of the evolving constel-
lation.

Hamid et al. [7] separately track each part (object) using particle filters based on
its appearance and shape models extracted from the initial state of the activity. After
the correspondence information has been established, characteristics of the spatial rela-
tionships between the agents at each image of the sequence is derived and used as the
feature vector representing the constellation of agents. The sequence of the features for
the duration of the activity are then quantized into discrete states with the help of an
HMM model. In this method the appearance of the agents are assumed to be constant
with time.

The main difference of the proposed model to the SLDS model of Pavlovic et al. [5],
is that we do not assume the availability of parts labels and automatically infer them in
the process of learning the model.

The most similar approach is that of Wang and Zhu [8], which proposes a method
for modeling video texture, through modeling the evolving attributed graphs obtained
from applying primal sketch to the frames of the video. However, that method does not
take into account the evolution of the appearance characteristics of the parts.

We submit that our approach is effective in modeling the evolution pattern of the
constellation of parts. As reported in section 4 an average precision of 87.3% is obtained
for automatic phase tracking in echocardiogram videos.

2 Time-Varying Pictorial Structures

We denote the model of an object category O represented by the constellation of the
parts with a relational structure (we follow the notation of [9]), G′ = (L, N ′,Θ), where
L = {l1, . . . , lM} denote the labels of the parts of the object, N ′ represents the spatial
dependencies between those labels, and Θ = [Θ(1),Θ(2), . . . ,Θ(K)] stands for the
parameters of the models of the attributes of the cliques [9] of sizes {1, 2, . . . , K} of the
relational structure, which define the constraints on the possible values of the attributes
in the instances taken from the object class. Note that Θ(1) = {θ

(1)
1 , . . . , θ

(1)
M }, where

each θ
(1)
m is the parameter defining the attribute of the m-th part in the object. The

parameters of the other cliques can be defined in a similar fashion.
For example, if we assume that the attributes of the cliques of size one are their areas,

and those of cliques of size two are the distance and angle between the centers of the
two parts in the clique, and if we assume that those attributes are Gaussian random
variables, then their corresponding θ(1) and θ(2) specify the mean and covariance of
their probability distributions.

When the object category O undergoes an activity pattern α , i.e. α(O), the con-
straints on the features of the relational structure modeling the object category change



Modeling the Activity Pattern of the Constellation of Cardiac Chambers 205

with the progress of time to reflect the effect of the activity pattern. In this case, we
can write the evolving model of the object as: G′

α(t) = (L, N ′,Θα(t)). Note that the
identity of the parts in the constellation and their spatial dependencies do not change
with time throughout the duration of the activity phase.

We assume that the evolution of the parameters of the model of the object are gov-
erned by a Gauss-Markov process, i.e. the probability distribution of the parameters of
the model at each time step is Gaussian given the values of the parameters for the pre-
vious time step. We use the generic notation x(.)(t) to denote the mean and W(.)(t) to
denote the covariance of the clique potentials of any size at time t, where (.) should be
filled with the appropriate term for those cliques. We also assume that at the beginning
of the simple activity the probability distribution of a clique potential is Gaussian, i.e.
N (x0, W0). According to the Gauss-Markov assumption we have the following equa-
tions. Note that H(.) will be considered to be identity in the rest of the work.:

x(.)(t) = A(.) × x(.)(t − 1) + H(.) × w(.)(t)
w(.)(t) ∼ N (0, W (.)) (1)

2.1 Correspondence

An observed instance of the activity α(O) at time t could also be represented by a
relational structure, G(t) = (R(t), N (t),d(t)), where R(t) = {r1, r2, . . . , rNt} are
the regions observed in the scene at time t, N (t) is their neighborhood structure, and
d(t) = [d(1)(t),d(2)(t), . . . ,d(K)(t)] are the features obtained from the constellation
for cliques of size {1, 2, . . . , K}, where d(k)(t) = {d(k)(r1, . . . , rk, t)|ri ∈ R(t), ∀i ∈
{1, . . . , k}}. Note that some of the observed regions correspond to the actual parts of
the object, whereas some are just false parts and some of the parts of the object may be
missing from R.

Correspondence is then defined as the best match, f∗
t : G(t) �→ G′

α(t), between the
labels of the object parts (L) and the observed regions at time t (Rt). The problem of
finding the optimal match is posed as finding the optimal configuration of a Markov
random field (MRF) [9] defined on the set of observed parts Rt, where each random
variable takes values in the set of labels L.

f∗t = argmin
ft∈Ωt

(Ut(ft|d(t)))

= argmin
ft∈Ωt

(Ut(d(t)|ft) + Ut(ft)) (2)

Ut is the time-varying version of the Gibbs energy function [9]. Ωt = LNt is the config-
uration space of the random field, where it is assumed that the random variables defined
on the sites in R(t) all take values in the time-independent label set L. Note that corre-
spondence is found here through a holistic approach by matching the snapshot at time
t of the evolving model of the object (G′

α(t)) to the observed constellation of parts at
that instance in time (G(t)). The time-varying posterior energy function in 2 can be
decomposed into the prior and likelihood energies:
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Ut(ft) =
∑

r∈R(t

φt
1(f(r)) +∑

r∈R(t),r′∈R(t)−{r}
φt

2(f(r), f(r′))

Ut(d(t)|ft) =
∑

r∈R(t)

φt
1(d

(1)(r, t)|f(r)) +∑
r∈R(t),r′∈R(t)−{r}

φt
2(d

(2)(r, r′, t)|f(r), f(r′)) (3)

where, φ1(.) and φ2(.) are the potential functions defined on cliques of size one and
two respectively [9]. We only consider the local features of each site in the constella-
tion and its relationships with all its neighbors. However, one can consider contextual
dependencies of higher orders as well.

The prior potential functions φt
1(f(r)) and φt

2(f(r), f(r′)) encode our prior belief
on the form of the configurations at each time instance t by associating a penalty value to
certain configurations. We assume here, that those penalty values remain constant with
time to show that the prior belief in the form of the configurations do not change with
time throughout the activity. Therefore we have φt

1 = φ1 = cst. and φt
2 = φ2 = cst.

Likelihood potentials on the other hand capture the temporal variations in the con-
straints imposed on the elements of the random field by the model of the activity. We
represent the variations in the likelihood potentials with dynamic kernels, where both
the center and the bandwidth of the kernels vary according to the specifications of the
activity as determined by the model.

φt
1(d

(1)(r, t)|f(r)) =
Φ(‖ d(1)(r, t) − xf(r)(t) ‖)

φt
2(d

(2)(r, r′, t)|f(r), f(r′)) =
Φ(‖ d(2)(r, r′, t) − xf(r),f(r′)(t) ‖) (4)

In these equations, x(.)(t) is the estimated center of the kernel, or equivalently the true
value of the attributes of the cliques as predicted by the Gauss-Markov model of the
activity according to equation 1, and dn(.) is the actual observed value of the clique in
the observation sequence. Φ is the Gaussian kernel employed here to reflect the fact that
the attributes of the observed sites in the constellations at each time instance are noise
corrupted versions of the actual values.

We employ the Highest Confidence First (HCF) method proposed by Chou and
Brown [10] to find the optimal labeling f∗

t . This is a deterministic algorithm for in-
ferencing in random fields with discrete configuration spaces.

Having found the labeling of the parts f∗
t in the observed constellation, we can now

obtain the observed values corresponding to each clique in the model G′
α(t). If we use

the generic notation y(.)(t) for these observed values of the cliques, we can write the
following relationship:

y(.)(t) = C(.) × x(.)(t) + v(.)(t)
v(.)(t) ∼ N (0, V (.)) (5)
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We assume C = I , so that value of the clique at any time is just a noise corrupted
version of the true state of the clique as projected by the pattern of the activity.

The combination of equations 1 and 5 for all the cliques constitute a linear dynamic
system. However, in this system the correspondence between the state of the system
and the observations are not available a priori and are obtained as described above. The
following provides a description of the mechanics of this process.
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Fig. 2. Mechanics of the filtering process. The evolved pictorial structure (G′
α(t − 1) → G′

α(t))
is used to find correspondence (f∗

t : G(t) �→ G′
α(t)). Parameters of the model are then updated.

We can picture the interaction of the evolving model of the constellation with the
observation at each instance of time as a linear dynamic system extended to relational
structures (Figure 2). Assuming the constraints on the formation of the constellation
at time (t − 1) are already known, we can estimate those constraints on the features
of the different cliques for the next step at time t (time update). Using the predicted
model at time t, labeling of the parts in the observed constellation at time t could be
established as described above. Having access to the correspondence information, we
can now obtain the measurements corresponding to each clique in the model and use
them to correct our estimate of the model of the constellation (measurement update)
previously obtained through the time update stage.

2.2 Phase Transitions

It was mentioned earlier that the object experiences topological transformations, such
as split and merge, at phase boundaries. The semantics of the part-based representation
change due to such transformations, e.g. new parts with different identities and char-
acteristics emerge as the result of a split. If we denote the sequence of activity phases
with: α1 → α2 → . . . → αP , then at phase boundary αm → αn, at time t, the model of
the evolving constellation of parts changes according to: G′

αm
(t) → G′

αn
(t + 1), where

G′
αp

(t) = (Lαp , N ′
αp

,Θαp(t)), ∀p ∈ {1, 2, . . . , P}
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This transformation entails transforming the semantics of the collection of the parts
of the object, and the corresponding transformation in the constraints imposed on the
observed constellations by the model: Lαm → Lαn and Θαm(t) → Θαn(t). Note that
since we consider the neighborhood structure N ′ to be fully connected in each phase,
we are not concerned with the transformation in the neighborhood structure, because it
is automatically determined by the number of part labels after the transformation.

The collection of the parts with labels determined by Lαn could change in size
(through birth/death process) or the identity of the parts could change or both could
happen at the same time. Since the content of the label set L has to do with the as-
sociated semantics of the activity pattern, one should determine the label set for each
possible phase of the sequence. This means that it has to be pre-defined that if for ex-
ample parts lαm

i and lαm

j of the m-th phase merge together it will result in part lαn

k in
phase n of the activity.

The effect of topological transformation on the attributes of the model of the evolving
constellation , to a large extent depends on the nature of the attributes. For example, if
the attribute of a single-site cliques (i.e. appearance features) is its area, then certain
rules have to be established beforehand on how to transform that attribute at the phase-
boundary. If two parts in the model merge at a phase boundary, then we can obtain the
area of the resulting part by adding the areas of the merging parts, for example.

3 Multi-phase Activity Model

Figure 3 illustrates the overall model used for the activity pattern of the constellation
of parts. Activity is decomposed into a sequence of segments {α1, α2, . . . , αP } each
corresponding to a phase. We assume that the distribution of the phases satisfies a first-
order Markovian dynamics governed by transition matrix ψi,j = Pr(αp = j|αp−1 =
i). In phase p, activity progresses according to the continuous dynamics determined by
the parameters of the model λαp , in that phase.

Note that λαp stands for the all parameters of the time-varying pictorial structure
G′

αp
(t) of phase p. Also note that unlike segmental models [11], where the linear models

in the consecutive discrete phases are unrelated, in the case here, the initial condition
for the evolving pictorial structure model in each phase depends on its final state in the
previous one. Its topology and initial characteristics also depend on the pair (αp−1, αp).

3.1 Inference and Learning

Figure 4 displays a dynamic Bayesian network, that captures in compact form the causal
relationship between the variables depicted in figure 3. For an activity sequence of du-
ration T , the sequence of discrete states {S0, S1, . . . , ST } is a rolled-out version of
the sequence of phases {α1, α2, . . . , αP } shown in Figure 3. At each time instance,
the state St corresponds to a phase of the activity, i.e. {St|t = {1, 2, . . . , T}, St ∈
{α1, . . . , αP }}. The transition between the states is determined by the phase transition
matrix Ψ and is defined as: ψi,j = Pr(St = αi|St−1 = αj). Activity starts in state
S0 with probability P (S0) = π0. F0:T = {ft|t = 0, . . . , T} are the correspondence
information for the observed constellations.
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<phase boundary> <phase boundary>

G(1)
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(T3 − 1) G′
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(T3)

G(T3)G(T3 − 1)G(T2 + 1)G(T2)G(T2 − 1)G(2)

Fig. 3. Non-linear dynamic model of the multi-phase activity pattern of an object represented by
the constellation of parts

In the joint probability distribution of the variables of the DBN P (S0:T , G′
0:T , G0:T ,

F0:T ), (S0:T , G′
0:T , F0:T ) are the hidden variables, which need to be inferred from the

sequence of observations G0:T by finding the posterior probability P (S0:T , G′
0:T , F0:T

|G0:T ).
Following the work of Pavlovic et al. [5] we employ the Viterbi approximation to

obtain the most likely sequence of discrete states S∗
0:T . As a by product and due to the

step-by-step nature of the Viterbi algorithm we find the approximation to the sequence
of correspondence information f∗0:T as well, using the procedure described in section
2.1. In essence, instead of finding the posterior probability P (S0:T , G′

0:T , f0:T |G0:T ),
we obtain the mode P (G′

0:T |G0:T , S∗
0:T , f∗0:T ).

Given the correspondence information at each step of the Viterbi approximation, we
transform Gt and G′

t at each time t = 1, . . . , T into the set of variables corresponding to
the cliques of size one and two, i.e. Gt �→ Yt, and G′

t �→ Xt. Therefore, the logarithm
of the joint probability distribution can be re-written as:

P (S0:T , X0:T , Y0:T ) = P (S0)
T∏

t=1

P (St|S(t−1)) +

P (X0|S0)
T∏

t=1

P (Xt|X(t−1), St, S(t−1)) +

T∏
t=0

P (Yt|Xt, St) (6)

Using the Gauss-Markov assumptions and employing equations 1 and 5 we can write:(
Xt|X(t−1) = x(t−1), St = αi, S(t−1) = αj

) ∼{
N (Aix(t−1),Wi) , if i = j

N (βi,j(x(t−1)),Wi) ,otherwise

(Yt|Xt = xt, St = αi) ∼ N (xt,Vi)
(X0|S0 = αi) ∼ N (x0,i,W0,i) (7)

In these equations, βi,j(.) is a non-linear function, which depends on the specific topo-
logical transformation applied to X(t−1) to obtain Xt and is defined by the pair of
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states (S(t−1), St) as described in section 2.2. Note that if the phase of the system does
not change at a given time t, the dynamics of the continuous state of the system will be
defined by the regular Gauss-Markov process, which is the characteristics of the linear
dynamic systems. Also, at the start of the activity, we assume that the properties of the
cliques of the part-based representation of the object have a normal distribution with
parameters (x0,i,W0,i) for the case that the activity start in phase αi.

For implementing the Viterbi approximation the definition of a partial cost function
δt(i) is necessary, which is defined as the following:

δt(i) = min
S0:t,X0:t

{−logP [{S0:(t−1), St = αi}, X0:t, Y0:t|λ]} (8)

The innovation cost δt,(t−1)(i, j) could be defined as the incremental error incurred
in finding the true state of the dynamic system by the process of filtering as just de-
scribed for a specific transition j → i. This cost can be written as the following:

δt,(t−1)(i, j) =
1
2
[(yt − Cix̃t|t−1,i,j)′ × (CiΣt|t−1,i,jC

′
i + Vi)×

(yt − Cix̃t|t−1,i,j)] +
1
2
log|CiΣt|t−1,i,jC

′
i + Vi| − logψi,j

As the result of the multi-stage inferencing described above, the following suffi-
cient statistics becomes available: E[st], E[sts

′
(t−1)], E[xtst], E[(xtst)(xtst)′],

E[(xtst)(x(t−1)s(t−1))′]. Using these sufficient statistics the parameters of the seg-
mental linear dynamic systems corresponding to each single phase of activity could be
estimated by the maximization step as described by Ghahramani in [12] to obtain: Anew

i ,
W new

i , Cnew
i , V new

i , and the phase transition Ψi,j for all phases αi, i = 1, . . . , P .

G(1)

ST

G′(T )

fT

S0 S1 S2

G′(0) G′(1) G′(2)

f0 f1 f2

G(0) G(T )G(2)

Fig. 4. DBN for modeling the relationships between the elements of the non-linear dynamic
model. (Note: Empty nodes represent hidden variables.)

4 Experiments and Results

The effectiveness of the model is demonstrated here in the context of automatic phase
tracking and identification in echocardiogram videos. Samples in the corpus are taken
from the activity pattern of the normal heart in the apical four chamber view [1] of
the heart. The corpus contains a total of 21 sample activity sequences from 10 different
echocardiograms. Experiments are conducted in a leave-one-out fashion, namely for 21
different rounds, each time an activity sequence was left out and a model for the activity



Modeling the Activity Pattern of the Constellation of Cardiac Chambers 211

pattern was learned from the remaining 20 samples. The resulting model was then used
to segment the left-out activity sequence. The final results of the temporal segmentation
performance were averaged over all 21 rounds.

Activity of the heart throughout one heart-cycle in apical four chamber view consists
of 3 distinct phases. It always starts in phase 1 and then progresses to the other phases.
The set of labels of the parts for each phase is as following 1:

phase 1: Lα1 = {LV,RV,RA,LA}
phase 2: Lα2 = {RC, LC}
phase 3: Lα3 = {RC, LV, LA} (9)

where RC is the result of merging between RA and RV and LC is produced by merging
LA and LV.

Nature of the transitions are defined a priori, which is consistent with introducing
the expert knowledge into the model of the activity. Note that pre-defining these rules,
by incorporating the expert knowledge, for the topological transformations is to limit
the number of all possible transitions that should be considered in the process of in-
ferring the variables of the model. However, if such expert knowledge is not available
in a certain problem, then one should consider all the possible forms of topological
transformations in the process of inferencing.

The form of the translations between the parameters of the dynamic relational struc-
tures in different phases, i.e. the mean of the dynamic kernels specifying the evolution
of the constraints on the object in each phase, at the phase boundaries should also be
defined a priori. This means that, if for example one of the appearance characteristics
is the size of a part, how does that characteristic change, when the part splits in two or
merges with some other part. In this experiment, local characteristics of the parts are
their locations and areas and the relational characteristics are the distance and angle
between two neighboring parts.

At a phase boundary if a split occurs, then the initial mean area after the boundary for
the two new parts will be half of the splitting part before the boundary. Mean location
of the two new parts will be located equidistantly from the center of the splitting part
on a line on either side. The new distances and angles will be calculated from the new
set of parts’ locations. For a merge an inverse operation will be in effect. Note that the
specifics of the transformations made to the characteristics of the relational structures
at the phase boundaries are very specific to the type of characteristics defined for the
objects and is different in different settings.

Having defined the nature of the topological transformations at the phase boundaries,
the goal is to learn the set of parameters of the model {{λα1 , λα2 , λα3}, Ψ}, where
λαi = {Ai, Wi, Ci, Vi, x0,i, W0,i} is the parameters of the LDS under phase i of the
activity, and Ψ is the phase transition matrix, which determines the probability of the
transition between the different phases and therefore the geometric distribution of the
length of stay in each phase before making a transition.

Boundaries of the heart chambers are manually traced for the 21 sequences in the
corpus. The reason for this requirement is that we want to make sure that perfect fore-
ground part detection is available, due to the fact that total number of parts in heart

1 LV=Left Ventricle, LA=Left Atrium, RV=Right Ventricle, RA=Right Atrium.
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sequences is low. For example, in phase 2 which consists of only 2 parts if either parts
is missed, we will get a degenerate constellation, which will be very unreliable for
any correct activity model learning. If for another application, the number of parts are
higher, then the tolerance for missing parts will correspondingly be higher as well, and
there won’t be any need for the assumption of correct foreground part detection. Note
that in this work our focus is on modeling the activity pattern of the constellation of
parts and not perfect part detection. In order to make the experiments realistic, few
false parts are added to the constellations. The appearance attributes of the added false
parts are sampled from the distribution of those attributes for the true parts, which make
the false parts similar to the foreground ones. These parts are then randomly positioned
in the image. Care is taken not to make them overlap with the foreground parts.

The inference algorithm was initialized with the mean and covariance of the constel-
lation of the cardiac chambers at the start of the activity sequences in the corpus in order
to obtain a better result. It is well-know that the Viterbi approximation is susceptible to
initialization.

Figure 5 depicts the average result of applying the model in each round of experiment
(total of 21), to the test sequence of that round. As shown in the figure, the automatic
phase detection matches the ground truth well most of the time, specifically 87.73% on
average over all sequences.
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Fig. 5. From left to right and top to bottom, each panel show the phase tracking results for rounds
1 to 21. ’Blue’ line stands for the automatically detected phase, and ’red’ shows the ground truth.

5 Discussion and Conclusion

We proposed an approach for modeling the complex activity pattern of objects repre-
sented by the constellation of their parts. The approach extends the notion of pictorial
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structure to the temporal domain. The resulting model is able to capture the pattern of
the variations in the appearance of the individual parts, the dynamics of the geometry of
the constellation of parts, and topological transformations in the constellation. Inference
and learning algorithms are provided for the model.

The approach was applied to modeling the multi-phase activity pattern of the con-
stellation of cardiac chambers in echocardiogram videos during one cycle of heart op-
eration. The model was learned from exemplars taken from normal echocardiogram
videos, and then successfully applied for decomposing the video of each heart cycle
into its constituent phases.

Several important issues need to be addressed in the future. First and foremost, is
dealing with the problem of simultaneous chamber detection and modeling the activity
pattern of the constellation of chambers in echocardiogram videos. Second, it is valu-
able to use the proposed scheme in learning the pattern of the normal heart and using it
for classification of test sequences into normal and abnormal cases. Finally, we would
like to apply the proposed approach to other domains to further assess its efficiency and
accuracy.
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Abstract. This paper addresses two questions concerning JPEG2000 compres-
sion - firstly - how much has noise influence on compression performance - sec-
ondly - can compression performance be improved by applying a new comple-
mentary conception with introducing a denoising process before the application
of compression? Indeed, radiographic images are a combination between the rele-
vant signal and noise, which is per definition not compressible. The noise behaves
generally close to a mixture of Gaussian and/or Poisson statistics, which gener-
ally affects the compression performance. In this paper, the influence of noise
on the compression performance of JPEG2000 images with investigating the pa-
rameters signal dynamic and spatial pattern frequency are considered; and the
JPEG2000 compression scheme combined with a denoising process is analyzed
on simulated and real dental ortho-pan-tomographic images. The test images are
generated using Poisson statistics; the denoising utilizes a Monte Carlo noise
modeling method. A hundred selected images are denoised and the compression
ratio, using lossless and lossy JPEG 2000, is reported and evaluated.

1 Introduction

Trends in medical imaging are developing increasingly digital; meanwhile the amount
of images captured per year is in the range of hundred petabytes1 and still on the rise.
The aim of image compression is to reduce the amount of data to be coded by re-
moving redundant information. Therefore, relevant information of diagnostic demand
is selected in the image and the coding process is reorganized so that, on the one hand
relevant information is emphasized, and on the other hand noise and non-meaningful
data are dropped. To achieve this, one can focus on the region of interest; filter out noise;
and quantize information accordingly to adaptive perceptual thresholds to satisfy con-
straints given by Weber-Fechner’s law [7]. The law defines just noticeable differences
(JND) that are mediated by medical expertise to prevent relevant information loss.

1 1peta = 1000tera.
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1.1 Background

Compression have become a valuable technology by introducing the standards JPEG
[14], Lossless JPEG (LJPEG)[14], and recently JPEG2000 [18] for widespread use.
Special fields are Teleradiology, Telemammography and Telepathology, where the full
diagnostic information is transferred digitally. Generally, a compression concept con-
sists of a transform stage, a quantization stage and an entropy coder. Each of those stage
can be tuned to satisfy the needs of the application at hand.

In general, two types of compression schemes - lossless and lossy - are known. The
term lossless [6] means a reversible scheme that achieves modest compression rates by
allowing exact reconstruction of the original image. Controversy, a lossy compression
scheme is irreversible and cannot achieve exact reconstruction. Roughly speaking, a
lossy scheme differs from a lossless in applying an additional quantization stage. This
stage provides parameters to enable a balance between compression rate and induced
artifacts.

To achieve visually lossless compression [13], a contrast sensitivity function (CSF),
which is the visual ability to see objects that may not be outlined clearly or that do
not stand out from their background, can be made adaptive to the human visual system
(HVS) [10,2] to regulate the quantization step-size and therefore to minimize the visi-
bility of artifacts. Therefore, image quality can be classified into five general categories:

1. Original data, as a ”gold standard”.
2. Data lossless compressed, as a ”silver standard”; finite numerical precision causes

small errors that are detectable mathematically.
3. Visually lossless, thus an observer cannot detect compression noise nor artifacts.
4. Diagnostically lossless, the artifacts are detectable but do not impact accuracy.
5. Artifacts put an substantially impact onto the diagnostic image content. The image

gets useless from point of view of the medics’.

In current clinical practice lossy schemes are not often being used, because of legal
questions and regularity policies. New clinical testing can develop reasonable policies
and acceptable standards for the use of lossy schemes. The performance of human ob-
servers can have additional impact on the assessment quality. The ideal observer ap-
proach (IOA) can be used for benchmarking, and represents a Bayesian method to per-
form detection tasks. Investigations show human performance limited by suboptimal
sampling efficiency and by additive internal noise [16].

Many compression techniques have been developed since the formalization of data
compression by Shannon. Clunie [6] tested seventeen lossless schemes with over three-
thousand different images from multiple anatomical regions and came to the conclusion
that newer lossless compression techniques perform better than older, and predictive
schemes with statistical modeling and with transform based coding perform better than
dictionary based coding. Belbachir et al. [3] proposed a hybrid compression scheme by
extending the wavelet transform (JPEG2000), adopting anisotropy and smooth bound-
aries, in applying the Contourlet transform, for the processing of the fine detail coeffi-
cients scales. This scheme shows less artifacts in the image and achieves better com-
pression rate at high resolution (i.e. larger ≥ 10242) medical images. Al-Shaykh [1]
et al. studied the effect of noise on image compression using the JPEG lossy image



216 P.M. Goebel, A.N. Belbachir, and M. Truppe

processing standard, where it was found that at higher compression rates the coders
filtered out most of the noise, but also degraded the image quality measured by peak
signal to noise ratio (PSNR). Slone et al. [17] assessed twenty posteroanterior chest
radiographs by five observers and concluded on one hand that lossless compression
provides an inadequate reduction of the data amount, and on the other hand lossy com-
pression artifacts may be detectable, but their presence does not affect diagnostic per-
formance. A recently published work [15] assessed JPEG competing with JPEG2000
schemes and came to the conclusion that JPEG could perform better than JPEG2000
for low compression rates. Herein, an open question arises in how one may compare
the results from different investigations, concerning perceived image quality.

Subjective quality ratings, utilizing usual mean opinion scale (MOS) statistics, built
from averaging observations, done by medical experts considering compression arti-
facts, can prove lossy compression to be usable. Although, objective quality ratings,
calculated by classical metrics, like the Peak Signal Noise Ratio (PSNR) or the Root
Mean Square Error (RMSE) that can exactly determine any loss of signal, are not suffi-
cient to predict differences between images as perceived by a human observer. Several
CSFs [11] that are determined by a measure of the limit of visibility for low contrast
patterns, were proposed (e.g. Campbell & Robson, Movshon, Barten, Daly, etc.).

Wang et al. [19] described the decomposition of the distortion between two images
into a linear combination of components by the structural similarity index measure
(SSIM), which separates out non-structural luminance and contrast distortions that are
less important to the degradation impression of diagnostic information. Measures stem-
ming from spatial autocorrelation2, which consider the neighborhood relations between
pixels, can cope better with the classification of artifacts, without affecting the diagnos-
tic content [5].

However, in particular – questions are – how much has noise influence on the com-
pression performance – is it possible to increase compression efficiency by the applica-
tion of an accurate denoising method?

1.2 The Contribution of This Work

This work improves the compression performance by embedding a denoising process
in the JPEG2000 compression scheme. The assessment for the investigation of com-
pression efficiency of the JPEG2000 algorithm is performed on noisy simulated and
real dental ortho-pan-tomographic (OPT) images. The influence of the noise on the
compression efficiency as a function of the signal dynamics is simulated, rather than
shown by other assessments, where the noise consists of a fraction of the signal by
means of a back-projection method. The approach can be exploited to every field of
application, which utilizes an appropriate noise model. The quality of the images are
compared by means of a MSSIM algorithm proposed by Wang et al. [19] and the usual
PSNR. Although the results are validated on radiographic medical images, this work
can be extended to other medical images like mammograms, where compression is also
of interest, and the dedicated noise model has to be deduced in the same way as it was
performed for x-ray images.

2 i.e. Moran I statistics.
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The paper is organized as follows: in Section 2, the compression scheme JPEG2000;
and OPT image reconstruction is revised as prerequisites. Section 3 focuses on the
assessment of compression efficiency. In section 4, the conclusions and thoughts on
prospective further work are given, and section 5 lists the bibliography references.

2 Preliminary Notions

Within medical diagnostics alongside medical expertise intuitive decisions are often
made solely, based on experience. Therefore, appropriate reconstruction methods have
to be able to detect small, low contrast image details, frequently situated side by side, of-
ten hardly differing in gray-level-means, while maybe just exhibiting a slightly distinct
variance. Herein an affinity to image compression is given, where similar objectives are
considered. With this in mind this paper is motivated.

2.1 Ortho-pantomographic Radiography

This is a technique where the entire dentition is projected onto a sensing device by
means of the photons of a poly-energetic x-ray beam. The x-ray source and the detector
are in opposition, rotating around the patients head, where the focus zone of the x-ray
beam describes a planar curve, which is standardized for the human teeth and jaw.

2.2 JPEG2000

JPEG 2000 [18] may produce a lossless compressed image, which means, no data
will be lost during compression and the entire data set can be recreated. Since 2001,
JPEG2000 support is added to the standard of Digital Imaging and Communications in
Medicine (DICOM).

Lossless compression ratios of 2:1 to 5:1 are possible. Visually lossless compression
ratios can go much higher, theoretically to over 100:1, depending on the image charac-
teristics. JPEG2000 supports more than the 3 bands, like JPEG and other compression
schema accept, and so it can easily handle hyper-spectral and multi-spectral imagery.
Hyper-spectral imaging is the simultaneous acquisition of images in many narrow, con-
tiguous, spectral bands. For example, most satellites today measure energy at many
wavelengths, thus this is called multi spectral imaging.

Regions of Interest (ROI) allow greater image quality in the foreground, while other
parts of a huge image may receive aggressive compression. That means, features of in-
terest are maintained at source level of detail, and the rest of the image is only provided
for contextual purpose. JPEG2000 specifies a 9/7 wavelet for ordinary lossy compres-
sion, and a 5/3 wavelet for lossless compression. The 8x8 blocking artifacts of JPEG
compression are prevented by the allowance of pixel blocks of much higher size.

3 The Methodology: OPT Image Reconstruction Revisited

Goebel et. al. have recently shown in [9] that the noise statistics of dental OPT images
follow a mixture of two generalized Gamma distributions, rather than pure Poisson dis-
tributions, where one of them stems from photon attenuation scatter (i.e. the absorbed
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photons) and the other from the photon scatter-glare (i.e. photons whose traveling paths
have changed, and have not been absorbed), which is accountable to the noise contribu-
tion. An image model

x = As (1)

was presented by adopting an idea stemming from blind source separation (BSS) [4]3,
with x the observation vector, A the mixing matrix, and s the hidden original signal
source vector. Utilizing an inverse BSS model, one may find a matrix

B = A−1 (2)

which reformulates to
ŝ = Bx (3)

that yields the solution
ŝ = i − κ̂(s) (4)

with i the image, and the noise estimate

κ̂(s) = Ñ (5)

The noise estimate Ñ is generated by an empirical Bayesian backward scatter projection
method. The noise is then modeled by an finite realization of an infinite field of locally
Gaussians with mean zero and variance one N(0, 1), scaled by an spatially varying
noise coherence factor ξ, yielding

Ñ = ξ[x,y,σ(x,y)2]N(0, 1) (6)

Thus, although the variance of the noise in radiography follows per definition the image
value by some function, one can treat an acquired image i as an additive mixture from
the diagnostic source image s contaminated by an independent noise function n. For
example, if one is assuming a Poisson process the noise model can be written as:

i = s + κ(s) (7)

where i is the observed image, s is the ”source” signal without noise, and the noise
function is proportional to:

κ(s) ∝ √
s (8)

In particular, in the utilized denoising approach, the noise function is modeled by the
Generalized Nakagami-m (GND) [12] distribution

f (x|m, Ω, λ) =
2λ

Γ (m)

[m

Ω

]m

x(2mλ−1)e−
m
Ω x2λ

(9)

In Equ. 9, λ is the shape adjustment parameter, which controls the heaviness of the
distribution tail. For λ < 1 there are heavy tails, which vanish for λ > 1 to a tight

3 BSS in general is the separation of a set of n statistically independent signals s = [s1 . . . sn]
from a set of m observed signals x = [x1 . . . xm], tied together by a mixing matrix A, leading
to x = As.
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Fig. 1. The acquisition part of the approach, which is using three images, the diagnostic image
I2, a background image I1, and a Monte Carlo simulation of the x-ray source image I0. Non-
linearities from the x-ray source can be compensated by polynomial illumination correction. The
background image I1 may be stored for instant use.

density function. For m = λ = 1 the GND becomes the Rayleigh density function; for
m = 1, λ �= 0 the function becomes the Weilbull density function; and for m = 1 and
λ = 1

2 it becomes a simple exponential density function.
The result of the noise estimation approach was used by Goebel et. al. in [8] for

OPT image restoration. Fig. 1 shows the acquisition part of the approach. This con-
cept makes possible neglecting the inherent dependence of the noise variance on the
diagnostic image values. The OPT projection process is supported by a GND for the
forward projection modeling of the photon scatter distribution, which is simulated by
a Monte Carlo method. A backprojection yields a solution for the photon scatter-glare
distribution, which is causing the noise contribution. Stressing Plancherel’s Theorem,
the energy of the noise estimate is then subtracted from the noisy transmittance4 image
in the wavelet domain (see Fig. 2). The reconstructed estimate of the transmittance T̃
getting reduced noise by preserving diagnostic details. The approach was tested against
classical wavelet hard- and soft-thresholding methods. It was shown that it performed
substantially better than the former in terms of modulation transfer function (MTF) and
signal to noise ratio (SNR). Within this paper, the denoising of the real radiographic
images is supported by the model.

Since early stages of the HVS are optimally ”tuned” to sine-wave gratings, synthetic
test patterns are often used in tests of acuity. Therefore, the assessment deploys sine-
wave gratings as test images with smooth increasing frequencies from 0.10 lines per
mm (lpmm) to the upper bound frequencies of 0.5, 1 and 2.5 lpmm. In image processing
the lpmm is an useful unit for images, but not for humans. Spatial frequency in visual
psychophysics is measured in cycles/deg visual angle (c/deg). If an observer views the
image at 57 cm, then 10 mm=1deg, and therefore 1mm=0.1 deg; the spatial frequencies
would be: 1cd/deg (0.1lpmm), 5cd/deg (0.5lpmm) and 25cd/deg (2.5lpmm) [16]. This

4 The transmittance is calculated by the fraction T = I2/I1, as shown in Fig. 2.



220 P.M. Goebel, A.N. Belbachir, and M. Truppe

I
0

X-ray 

Source 

Simulation

CALCULATION

of SCATTER 

PRIORS

T
Trans-

mittance

N

Noise

+

WT  

Isotropic 

Undecimated 

Wavelet 

Transform

BACKWARD 

SCATTER 

PROJECTION

WT  

Isotropic 

Undecimated 

Wavelet 

Transform

2
~
N

c

SUB
Noise 

Estimate

N

~

Energy

Energy

2

N
c +T

WT
-1

Inverse 

Wavelet 

Transform

Trans-
mittance
Estimate

T
~

I
0

X-ray 

Source 

Simulation

I
0

X-ray 

Source 

Simulation

CALCULATION

of SCATTER 

PRIORS

T
Trans-

mittance

N

Noise

N

Noise

+

WT  

Isotropic 

Undecimated 

Wavelet 

Transform

BACKWARD 

SCATTER 

PROJECTION

WT  

Isotropic 

Undecimated 

Wavelet 

Transform

2
~
N

c

SUB
Noise 

Estimate
Noise 

Estimate

N

~

Energy

Energy

2

N
c +T

WT
-1

Inverse 

Wavelet 

Transform

Trans-
mittance
Estimate

T
~

Trans-
mittance
Estimate

T
~

Fig. 2. The subtraction of the noise estimate �N from the diagnostic image mixture by utilizing
the conservation of energy within the wavelet space. The model exploits an empirical Bayesian
approach for the auto-calculation of the backward scatter projection. The transform used is the
isotropic undecimated a-trous wavelet transform.

range indeed is the optimal range for vision, and therefore it is used for the investiga-
tions in this paper.

Fig. 3 shows one of the set of test patterns that are duplicated and perturbed by
Poisson noise Ñ to test the behavior of common noise simulation methods.

Fig. 3. A synthetic test pattern deployed by sine-wave gratings, which are optimally tuned to the
HVS. The test images are perturbed by Poisson noise for the assessment.

4 Experimental Results and Evaluation

One-hundred test images per set, with logarithmic amplitude stepping from set to set
were generated to study the influence of changing dynamic range, resolution and scatter
noise onto the compression factors. Thus, six sets of test images were generated: – an
original set – an original set with Poisson noise added – and then – a copy of both sets
compressed by lossless compression – and again – another copy of both sets compressed
by lossy compression (Q=40).
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Fig. 4. The dependency of the compression factor on the dynamic range for smooth noisy images.
There are four groups, each showing the three lines-per-millimeter frequencies 0.5, 1 and 2.5
lpmm, for lossless, lossy, lossless with noise and lossy with noise images. Additionally, results
from the original real radiologic images of Table 1 are shown; performing closely to the noiseless
simulation.

Fig. 4 shows the simulation results of the dependency of the compression factor on
the dynamic range for the smooth, noisy images. There are four groups, each show-
ing the three lines-per-millimeter frequencies 0.5, 1 and 2.5 lpmm, for lossless, lossy,
lossless with noise and lossy with noise. Additionally, results stemming from a set of
original real radiologic images, listed in Table 1, are shown. The results are plotted for
five real image examples, with different dynamic ranges 1:N.

In the noise free cases, the graphs from the simulation results show a nearly linear
behavior between logarithmic dynamic range and logarithmic compression factors. The
lines-per-mm frequency produces a practically parallel shift of the curves. The noise
added cases behave nearly constant, regardless of the dynamic value. Compared this
to the graphs of the real diagnostic images, there is a different behavior – the real im-
ages compete like the simulation images, without noise, in both, the lossless and the
lossy cases. Therefore, the usual method of just adding noise, bound by some function
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Table 1. Comparison of the compression ratio results for five out of fifty real OPT images consid-
ering lossless and lossy compression; showing the influence of original noise contribution; and
denoised versions on the compression performance

Compression of the Original Images Compression of the Denoised Version of the Images

Lossless Lossy Q=40 Lossless Lossy Q=40

Image Dyn. Original Ratio Compressed Ratio Compressed Original Ratio Compressed Ratio Compressed

Range TIFF Size Size Size TIFF Size Size Size

1:N in Bytes in Bytes in Bytes in Bytes in Bytes in Bytes

Im1 859 5953770 3,19 1865511 8,53 697955 5554802 4,02 1381881 10,23 542991

Im2 8598 5956778 2,04 2913467 5,08 1171541 5541896 2,36 2347144 5,87 944041

Im3 18598 5956926 1,78 3346022 4,42 1346354 5551302 2,01 2759379 5,01 1109115

Im4 28598 5957118 1,70 3504326 4,34 1409780 5553742 1,92 2894115 4,77 1164495

Im5 56553 5958622 1,50 3968786 3,73 1596354 5551738 1,70 3264450 4,23 1311882

Table 2. A comparison of the image quality by MSSIM and PSNR metrics for the real images

Dyn. Range Original MSSIM PSNR Denoised MSSIM PSNR

lossless lossy lossy lossless lossy lossy

859 1,00 1,00000 95,43 1,00 1,00000 101,01

8598 1,00 0,99997 79,12 1,00 0,99999 82,89

18598 1,00 0,99992 74,62 1,00 0,99996 77,57

28598 1,00 0,99982 71,11 1,00 0,99993 74,66

56553 1,00 0,99966 68,04 1,00 0,99981 69,94

(e.g. Poisson) on the image values, seems not accurate enough. Unfortunately, the de-
noising of the real diagnostic images does not bring a big advantage in compression
performance alone. Table 2 compares the quality measures achieved. The denoised im-
ages perform better in both metrics’, the PSNR and MSSIM. Therefore, utilizing the
denoising method, one achieves higher compression together with better image quality.
The higher the dynamic of the image, the more there is a limitation stemming from
the quantization stage of the compression. Therefore, the dynamic range of the image
should not be spread by extra contrast enhancement prior to compression.

5 Conclusion and Outlook

This paper studied the improvement potential of the JPEG 2000 codec performance
for medical images while including a denoising process. The additional denoising im-
proved image quality; and the compression performance for ≈ 13%. Although the im-
provement is found not very significant, the better image quality exhibits viewing with
enhanced contrast. This is only true if the denoising is appropiately tuned to the type of
images.

An improved compression, satisfying legal thoughts by aggressively using the ROI
concept in JPEG2000 and a denoising step, seems to have potential for the compression
of radiographic images. The scheme can use a noise estimate, exploited by a Monte
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Carlo simulation for determination of an importance map– as shown in Fig. 5, pro-
posed in [9] – that spatially defines the regions of interest for fidelity compression. The
remainder of the image can be compressed more aggressively. In particular for dental
use, the importance map can focus on the teeth and their surrounding neighborhoods
that having fine detail, rather than other areas.

Fig. 5. The dedicated noise coherence factor ξ(x, y, σ2) image. In the areas of interest, the factors
are below 1, which causes softer denoising.

A combination of a recently proposed hybrid compression scheme by exploiting the
Contourlet- and Wavelet-transform [3], may reduce artifacts for the lossy portion of
the image furthermore. As a perspective, this procedure will be validated for mam-
mograms as compression is highly solicited and the dedicated noise model should be
deduced. It is also intended, as a next investigation focus, to improve the JPEG2000
compression, utilizing the hybrid contourlet/wavelet transform [3] and Monte Carlo
noise modeling [9].
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Abstract. This paper presents a semi-automatic method for tracking
the mitral valve leaflet in transesophageal echocardiography. The algo-
rithm requires a manual initialization and then segments an image se-
quence. The use of two constrained active contours and curve fitting
techniques results in a fast segmentation algorithm. The active contours
successfully track the inner cardiac muscle and the mitral valve leaflet
axis. Three sequences have been processed and the generated muscle out-
line and leaflet axis have been visually assessed by an expert. This work
is a part of a more general project which aims at providing real-time
detection of the mitral valve leaflet in transesophageal echocardiography
images.

Keywords: Medical Image Analysis, Tracking and Motion, Active Con-
tours, Ultrasound Imaging.

1 Introduction

The mitral valve is one of the four valves of the heart; its function is to keep the
blood flow in the physiological direction when the heart contracts. Due to various
pathological factors, a mitral regurgitation can occur. The work presented in this
paper belongs to a more general project of robot assisted surgery which aims
at repairing a pathological mitral valve in a context of microinvasive beating
heart surgery. The control of the robot is performed under ultrasound imaging
guidance and required robust and real time algorithms to segment the valve. This
project called GABIE is supported by the CNRS program ROBEA, and involves
4 laboratories (LIRMM, TIMC, LRP and CEA) and 2 University Hospitals (APH
Paris and University Hospital of Grenoble).

Although transesophageal echocardiography is the classical imaging technique
for mitral valve surgery, there is no satisfactory method allowing an automated
segmentation of the valve.
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The tracking of the myocardial border of the left ventricle (LV) is a very
active research area that makes intensive use of deformable models, ([1],[2]),
Markov random fields [3] or optical flow methods ([4],[5]). Data processed are
either in 2D+T or 3D+T ([6], [7], [8], [9] [10] ). [11] propose to use information
fusion to track the LV in echocardiography in real-time. His algorithm requires
a statistical shapes analysis of the LV, obtained by principal component analysis
(PCA) on a large number of LV shape. We think, these methods will not work
for the segmentation of the mitral valve leaflet, because of the high inter-patient
variability. Mikic [12] uses active contours to segment either the left ventricle or
the mitral valve leaflet. The method requires a manual segmentation on a image
of the sequence at the beginning of the procedure and estimation of the optical
flow field along the sequence. It takes about 20 minutes to process one complete
cardiac cycle (i.e � 25 to 30 images). [13] processes an image sequence using
wavelet packet decomposition (in 2D + T) and then selects the sub-bands (in
the wavelet domain) which preserve most of the energy of the target structure
with an acceptable Signal to Noise Ratio. These sub-bands are then recombined
to create the feature footprint ; this footprint is then used to analyze an image
sequence. Although this method seems to process an image sequence fast, the
analyzed sequences must not differ markedly from the data used to construct
the filters.

In this paper, we present a semi-automatic method (a manual initialization is
required) to segment the axis of mitral valve leaflet in transesophageal ultrasound
images. The proposed approach uses 2 active contours. The method is designed
to be fast and to achieve the segmentation in near real-time.

This work is intended to be the pre-operative step of the surgery scenario
and should provide semi-automatic segmentation of several mitral cycles. In
an intra-operative second step which is actually under development, the set of
segmentation obtained during the pre-operative step will be used to detect the
valve in real time. Therefore only near real time capability are required for the
pre-operative algorithm, in order to make it usable in a surgical context and
to achieve the repeatability condition of the mitral valve motion needed by the
intra-operative step (more details are provide in conclusion).

2 Material and Method

2.1 Context

The mitral valve is a left-sided valve located between the left atrium and the
left ventricle, made up of two fibrous membranes which are attached to the
left ventricle muscle through the mitral annulus. On the free edges of the two
leaflets, there are multiple strong cords (like parachute cords), in turn attached
to papillary muscles (reinforcement of the left ventricle wall). When the heart
contracts, the two leaves billow up to close off the opening between the left
atrium and the left ventricle. The closure mechanism is mainly passive according
to the pressure gradient between each side of the leaflet. During the contraction
of the left ventricle there is also a geometrical modification of the shape of the
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annulus. Although the cardiac muscle motion resulting of the heart contraction is
non rigid, it appear close to a rigid motion in one dimensional echocardiography
images. Therefore two major kinds of movements can be shown in these images:

– the leaflet movement (main component) which is non rigid but relatively
close to a rotation around a point based on the muscle-leaflet junction area
called junction point,

– the muscle movement which is approximately rigid with essentially transla-
tional components and small rotational components;

These movements can be used as an a priori knowledge in order to facilitate the
semi-automatic segmentation of the mitral valve in echocardiography.

2.2 Method

The proposed method relies on the use of two active contours (Figure 1) to
track the leaflet efficiently : one tracks the cardiac muscle and the other tracks
the mitral valve leaflet. The tracking method can be chronologically divided in
2 times:

1. the segmentation of the cardiac muscle,
2. the segmentation of the mitral valve leaflet

Each segmentation is realized in two steps :

1. rough segmentation using a curve fitting algorithm.
2. refinement using active contours.

This method allow us to solve two reluctant problems of the mitral valve tracking:

– the ability to track very fast motions.
– the ability to separate the valve snake of the muscle during the opening valve

phase.

The curve fitting algorithm providing rough segmentations, use measurements
along curves normals. Therefore some 1D image processing techniques are re-
quired to detect feature points on curves normals.

Muscle Active contour

Muscle-Mitral leaflet junction point

Mitrale leaflet Active Contour

Fig. 1. The two contours
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This paper is organized as follows: section 3 describes the method used to
build a rough segmentation of both mitral valve and cardiac muscle. Section 4
presents the proposed method to refine rough segmentation using snakes. Figure
2 presents the pipeline of our method, and sets up briefly the connection between
different section of the paper.

Initial Segmentation
Buffer

Refinement

Contour

Image k + 1
Qv

k Qv
k+1
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Qm
k+1

Q̃v
k+1Q̃m
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Transformation
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Segmentation

Mitrale leaflet

Segmentation

a)

Transformation

fitting Refinement

Contour

Fig. 2. Synoptics of the proposed method

3 Rough Segmentation

In this section, we explain how a rough segmentation of the cardiac muscle (resp.
mitral valve leaflet) in the kth image is computed using the final segmentation
of the (k − 1)th image.

3.1 Curve Fitting Algorithm

The problem is to estimate the parameters of a transformation which minimizes
the distance between two curves. Making the assumption that curves are defined
by points stored in vectors: Q = [x(s), y(s)], then the relation between two curves
can be written as follows:

Qf = WX + Qi (1)

where Qf is the target curve and Qi is the initial one. W is the transformation
matrix and X the vector of the transformation parameters. The distance used
is the sum of square normal measurements that can be approximated by:

‖ Qf − Qi ‖2
n =

1
N

N∑
k=1

[(Qf (k) − Qi(k)).n(k)]2 (2)

≈
N∑

k=1

m(k)2 (3)
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where ‖ . ‖n denotes the norm based on normal measurements, n(k) is the normal
vector to the curve at the abscissa k, m(k) is the normal measurement computed
from 2D operator on normal profiles. Robustness to noise can be obtained by
using a regularization term so that the problem can be expressed as:

X̂ = arg min
X

(α ‖ X − X ‖2 + ‖ Qf − Qi ‖2
n) (4)

Solving Eq 4 in the least-squares sense is equivalent to a classical curve fitting
problem. Blake has proposed a recursive algorithm to solve this problem in [14].

3.2 Rough Segmentation of the Muscle

As explained in section 2 the cardiac muscle motion appears close to a rigid
motion in one dimensional images. Therefore, the rough contour position of the
cardiac muscle is estimated from the initial template (manual segmentation on
the first image) by translating it.

The rough contour for the image k is given by:

Q̃m
k = WmXm

k + Qm
0 (5)

where Xm
k is the transformation estimated (i.e. a translation) and

Wm
0 =

(
xm

0 0
0 ym

0

)
(6)

with 0 = (0, 0, . . . , 0, 0)T

The curve fitting algorithm requires feature detections on the curve normals.
Therefore it is necessary to process the gray-level profiles corresponding to these
directions in order to get the normal measurements.

A canny edge detector approximated by the derivative of the Gaussian kernel
(σ = 1.4) is used for this purpose.

3.3 Mitral Valve Leaflet Transformation Estimation

In this section, the abscissa of the junction point on the muscle curve at time
k − 1 is supposed to be given. It will be used as a rough estimate of the current
abscissa of the junction point. Given that the leaflet motion is close to be a
rotation around the junction point, this point must be invariant to the involved
transformation. For this purpose, the previous segmentation of the leaflet (after
refinement) is first translated on the junction point and then an affine trans-
formation without translations components is used for fitting. All computation
are made in a coordinate system centered on the junction point. In this way the
junction point is a fixed point (invariant to the involved transformation). The
computation of Q̃v

k is then given by:

Q̃v
k = W v

k−1.X
v
k + Qv

k−1 (7)
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where:

W v
k−1 =

(
xv

k−1 0 0 yv
k−1

0 yv
k−1 xv

k−1 0

)
(8)

and represents a 2D affine transformation matrix ; and Qv
k−1 represents the

mitral valve leaflet contour of the k −1th image translated to the rough junction
point of the kth image.

The presence of the mitral valve leaflet is characterized by a ridge in the
image, that corresponds to a local maximum in the gray-level profiles along the
normal directions. The second order derivative of a 1D Gaussian kernel is used to
detect the valve on normal curves. In fact this operator is a good measurement
of the contrast between two regions.

4 Refinements

4.1 Need for a Refinement

At the end of the previous step, the contours are in a neighborhood of feature
structures. Thus we have to bring them closer to the cardiac muscle (resp mitral
valve leaflet) ; This is done by using active contours.

Snakes has been originally introduced by Kass and al [15]. A snake contour is
described parametrically by v(s) = (x(s), y(s)) where x(s), y(s) are x, y coordi-
nates along the contour (the so-called snaxels) and s ∈ [0, 1] is the normalized
parametrization. The snake model defines the energy of a contour v(s), as:

Esnake =
∫ 1

s=0
λEInt(s) + EExt(s)ds (9)

where EInt is the internal energy of the contour, imposing continuity and curva-
ture constraints, and where EExt is the image energy allowing the snake to move
to the feature points in the image. λ is the regularization parameter governing
the compromise between adherence to the internal forces and adherence to the
external forces. An initial contour evolves by minimizing of the Equation 1.

4.2 Muscle Snake Energy Definition

The energy of the muscle snake is composed of two terms related to the internal
energy and one term related to the external energy.

Internal Energies. The 1st term is related to the length of the curve. It penal-
izes curves where the distance between two successive snaxels is far to a distance
dm which is computed at the beginning of the algorithm. This energy keeps the
length curve close to the initial one, and prevents the snake to segment the whole
cardiac muscle. This 1st term is written:

Em
Int1(si) = αm

1 (|si−1 − si| − dm)2 (10)

where αm
1 is a weighting parameter.
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The 2nd internal energy term approximates the 2nd order derivative of the
curve. This term is computed from the ’cardiac muscle’ control points sm

i by
using the finite differences:

Em
Int2(si) = αm

2 | s(i − 1) − 2s(i) + s(i + 1) | (11)

where αm
2 is a weighting parameter.

External Energy. The external energy term is related to the modulus of the
gradient image. It allows the contour to move toward the cardiac muscle appear-
ing as an edge in the image. This energy term is given below:

Em
Ext(si) = − ‖ ∆I(si) ‖2 (12)

4.3 Mitral Snake Energy Definition

Because the movement of the mitral valve leaflet is a bit more complex than the
movement of the cardiac muscle, we introduce different energy terms.

Internal Energies. The internal energy is composed of the same energy terms
that for the muscle snake with weighting parameters αv

1 and αv
2 respectively for

the length constraint and the curvature constraint.

External Energy. The image of the leaflet corresponds to a local maximum of
intensity. Reasoning about the image intensity map as a surface in R3, features
corresponds to areas where one of the principal curvatures is high (Figure 3).
The image of the higher principal curvature allows us to build a robust external
energy function:

Ev
Ext(si) = K+(si) (13)

where K+ is the higher principal curvature.
In the actual implementation, principal curvatures are computed from eigen-

values of the Hessian matrix of the image intensity map.

a) b)

Fig. 3. a) Ultrasound image b) K+ of the image
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4.4 Dynamic Programming Minimization (DP)

The problem of energy snake minimization is solved using dynamic programming
(DP). Amini has proposed this method [16] in order to overcome the limitations
of classical variational methods like instability or non optimality and to allow
the use of stronger constraints without falling into a local minimum. When an
energy functional can be written as:

Esnake =
N−2∑
i=1

Ei(si−1, si, si+1) (14)

the minimization can be obtained using Dynamic programming as described
in [16].

The algorithm is iteratively applied to the contour. At each iteration, a snaxel
can move in a previously defined neighborhood (search area). DP allows us to
correctly minimize the energy function and provides a way to locate the junction
point on the muscle curve. The search-area for each snaxel of the muscle snake is
defined by a 8-neighborhood around the snaxel. We define the same search-area
for all snaxels of the mitral snake, except for the one (junction point) which is
connected to the muscle snake. For this one, the search area is defined by a region
of 8 pixels around its previous estimate and on the muscle snake curve. We do
not define an external energy term for this point. In this way, the junction point
will be only driven by its internal energy according to the position of the two
next snaxels and will be correctly adjusted to the muscle curve by continuity of
the leaflet curve.

5 Results and Discussion

5.1 Algorithm Initialization

The algorithm is initialized by the manual segmentation of both the muscle and
the mitral valve leaflet and by the specification of the junction point. The al-
gorithm then computes dm (resp dv) the mean distance between two successive
points of the muscle curve (resp of mitral curve). Manual segmentations influ-
ences the robustness and the accurency of segmentations. We have observed that
segmenting a large part of the cardiac muscle during the initialization improve
the robustness of the algorithm.

5.2 Results

The described method has been implemented using Matlab c© (and in Matlab
language). Dynamic programming algorithms has been coded in C using mex.
Snakes requires the tuning of some parameters : (αm

1 , αm
2 ) for the muscle snake

and (αv
1 , αv

2 ) for the mitral snake.
The processing time of our algorithm depends on the number of snaxels used.

In a general rule to obtain accurate segmentations, the mean processing time is
less 0.5 s and the number of iteration for the DP algorithm less than 10.
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Fig. 4. Processing of a sequence. Segmentation of the biggest leaflet.

The validation of the method is based on the visual assessment of an expert.
We have processed 4 sequences of 250 to 300 images. For each one, the medi-
cal expert is asked to segment the cardiac muscle, the mitral valve leaflet and
to point the junction point. The sequence is then processed with the proposed
method. The medical expert is then asked to give his opinion about the segmen-
tation proposed by the method. Most of the time (about 90% of the images),
the expert is very confident in the segmentation provided by the method. In the
remaining 10%, although the segmentation is ”bad” (and not absolutely false !),
the snake re-converges to a good contour in the next 3-to-6 images.
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5.3 Discussion

The proposed method still has some drawbacks. The main one is the tunning of
parameters. However the main objective of our algorithm is to provide a set of
segmentations that will be used during the intra-operative step where no tun-
ning of parameters is necessary. So, we could imagine trying several parameter
configurations in order to obtain a good tunning. Another point which could be
improved is the way we compute the principal curvatures which is known to be
noise sensitive [17] ; We are very confident in the near real-time possibilities of
this algorithm needed for the surgical scenario (sec. 1). From our experience,
converting algorithms from Matlab language to ’C’ language should divide the
processing time by a factor of 10. Other ’coding’ optimizations such the dynam-
ical selection of a ROI to process (instead of processing the whole image) should
speed up the image processing and thus allow a near real-time mitral valve leaflet
detection.

6 Conclusion and Future Work

In this paper, a method to rapidly segment the mitral valve leaflet in echocardio-
graphy has been presented. Due to the fact that the motion of the valve and the
motion of the muscle are quite different, we use two contours to capture these
motions. For each contours segmentations are realized in two step: first we use
a curve fitting technique to provide rough segmentation of the tracked contour
then we refine it by using a snake. As mentioned in the abstract, this work is
the first step of a two-steps procedures which aims at segmenting the mitral
valve leaflet in echocardiagraphic images. The presented method will be the pre-
operative step of the surgery scenario and will provide segmentation of several
cardiac cycles. During the intra-operative step, we should be able to segment in
real time the cardiac muscle and the mitral leaflet by searching the more similar
image in the pre-operative images and then applying a refinement to accurately
segment the mitral valve leaflet.
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Abstract. This paper presents an algorithm for classifying different tissue types 
in T1-weighted MR brain images using fuzzy segmentation. The main aim in 
this study is to compensate for the blurring effect on tissue boundaries due to 
partial volume effects. This paper is organized as follows: first, an adaptive 
greedy contour model has been developed to separate the intracranial volume 
(ICV) from the scalp and skull. Second, in order to deal with the problem of the 
partial volume effect, an algorithm for fuzzy segmentation is presented which 
has integrated fuzzy spatial affinity with statistical distributions of image inten-
sities for each of the three tissues – cerebrospinal fluid, white matter and grey 
matter. This algorithm is tested on well-established simulated MR brain vol-
umes to generate an extensive quantitative comparison with different noise lev-
els and different slice thicknesses ranging from 1mm to 5mm. Finally, the re-
sults of this algorithm on clinical MR brain images are demonstrated. 

1   Introduction 

The advantages of magnetic resonance imaging (MRI) over other diagnostic imaging 
modalities are its good tissue contrast and its non-invasive nature. Accurate classifica-
tion of MR images according to tissue type, white matter (WM), grey matter (GM) 
and cerebrospinal fluid (CSF) at the voxel level is important in many neuroimaging 
applications: multimodality image correlation, visualization, and quantification, and 
their clinical uses such as in tumour and lesion detection. Changes in the composition 
of tissues in the whole volume or within specific regions can be used to characterize 
physiological processes as well as pathological states [1]. In addition, the total brain 
volume has been shown to be correlated to various measures of disease severity, a 
reduction in grey matter volume may be particularly relevant in schizophrenia and 
Alzheimer’s disease. Many automated or semi-automated approaches for tissue  
segmentation in single echo MR brain images or multi-spectral MR data have been 
reported [2].  

Approaches to segmentation may be classified into different categories: edge-based 
detection, which represents the boundaries of objects where signal changes occur, 
while region-based methods [3] grow connected regions, which are homogenous 
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according to some measure of gray level or texture. Automatic thresholding and mor-
phological operations have also been used in many segmentation techniques. Each of 
these groups may be further divided into subgroups: hard and fuzzy – depending on 
whether the defined voxels are described with a binary value of 1 or 0 (known as 
hard) or the amount of tissue belonging to the given tissue class of the voxel (known 
as fuzzy) [2]. The soft tissue contrast enables complex and subtle brain structures to 
be clearly visualized. However, a unique correspondence of grey level ranges to dif-
ferent tissue types does not exist. The limited spatial resolution of MR imaging and 
the complex shape of the tissue interfaces in the brain imply that a large portion of 
voxels are affected by partial volume (PV) voxels [4], i.e., voxels that contain a mix-
ture of two or more tissue types, and not a single tissue. Leemput et al [5] have ap-
plied a statistical framework to the problem of partial volume effects. In this study, 
we present a three-dimensional brain tissue segmentation which modifies the method-
ology of Udupa et al [6] to take into account the statistical distributions of the image 
intensities of each tissue element integrated with their fuzzy spatial affinities.  

2   Materials and Methods 

2.1   Digital Head Phantom and Simulated Data 

Realistic, high resolution, digital, volumetric phantoms of the human brain were cre-
ated using an MRI simulator [7]. The volumes contain 181×217×181 voxels and 
cover the brain completely. The brainweb MRI simulator allow users to independ-
ently control a wide range of conditions, e.g., different levels of noise, image resolu-
tion including various MR acquisition parameters. This data consists of a partitioning 
of the head volume into 10 fuzzy tissue membership volumes (GM, WM, CSF, skull, 
fat, muscle/skin, skin, connective tissue, glial matter, and other), all of which are 
downloadable from http://www.bic.mni.mcgill.ca/brainweb. The voxel values in these 
fuzzy volumes reflect the proportion of tissue present in that voxel in the range [0, 1]. 
Note that the glial matter that occurs subcortically around the ventricles is not separa-
ble from the GM, therefore, in this calculation, glial matter tissue volumes are taken 
into account in GM volume estimation. The following parameters have been selected 
from this site: T1-weighted MR volume data with slice thicknesses of 1mm, 3mm and 
5mm and different noise levels ranging from 0% to 7%. 

2.2   Clinical MRI Data 

Ten coronal (6 males and 4 females) MR scans acquired at the Centre for  
Morphometric Analysis (CMA), Massachusetts General Hospital (MGH) using a 
three-dimensional T1-weighted spoiled gradient echo MRI 3D-CAPRY sequence on 
an 1.5T General Electric Signa MR system with the following parameters: TR = 
50msec, TE = 9msec, flip angle = 50°, field of view = 24 cm, slice thickness = con-
tiguous 3.0 mm, matrix = 256×256, number of averages = 1 and number of slices 
between 60 – 65.  

Ten MR (4 males and 6 females) head scans acquired on a 1.5T Siemens Magne-
tom MR system (Iselin, NJ) with the following parameters: TE = 40 msec, TE = 8 
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msec, flip angle = 50°, field of view = 30 cm, slice thickness = contiguous 3.1 mm, 
matrix = 256×256, number of averages = 1 and number of slices between 60 – 65. 

These data sets and their manual segmentations were provided by the CMA, MGH 
and are available at http://neuro-www.mgh.harvard.edu/cma/ibsr. Results from all 20 
data sets from MGH are presented in this paper. In addition, three sets of T1-weighted 
brain MR data are also tested in this study obtained from UCL volunteers. 

2.3   Methods 

In this study, a deformable contour model was developed to separate the intracranial 
volume (ICV) from the scalp and skull. The main aim of developing this deformable 
contour model was to facilitate the delineation of anatomical structures whilst reduc-
ing operator time and measurement variability. Next, a modified version of Udupa’s 
algorithm was developed for the segmentation and analysis of brain structures in MR 
images. We validated each stage of our approach using real and simulated MRI data.  

2.4   Deformable Contour Model  

Active Contour Models (ACM) [8] provide a promising framework for boundary 
detection through the solution of energy minimization using variational calculus. The 
energy function is an integral sum of different weighted energy constraints. Williams 
et al [9] modified the ACM with the greedy algorithm to make it more stable and 
flexible. The original contour model was attracted to contours with large image gradi-
ents and in the greedy algorithm, the location that gives the smallest energy value is 
chosen. In this study, a deformable model has been developed based on this modified 
version to delineate the volumetric brain structures, full details can be found in 
Parveen et al [10] and a short description is presented here.   

The three-dimensional deformable model is composed of a set of control points 
that are connected both in a two-dimensional plane and between slices.  

( ) ( ) ( ){ }iyixivxy ,=  and ( ) ( ) ( ) ( ){ }iziyixivxyz ,,=  represent a section of contour in the xy  

plane and connected contours with components in xyz , where yx, and z  are the 

spatial coordinates and i  is the length along the contour. The total energy can be 
represented by equation (1):  
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where, intE represents the internal spline energy, extE  represents the energy from 

image features. α  and β  are the weighting parameters to control the internal energy 

and the image energy, respectively. 
In MR brain images, the non-brain tissues, such as fat, bone marrow, are not dis-

tinctly separate from CSF, therefore, the energy functions were reparameterised so 
that the neighbourhood matrices contain comparable values. Therefore, the desired 
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regions were obtained by normalizing the energy values for internal and external 
energies. 

2.5   Relative Fuzzy Classification with Spatial Affinity 

The main aim in this study is to compensate for the blurring effect of tissue bounda-
ries due to the partial volume effect. To overcome this effect, the statistical distribu-
tions of the image intensities of each tissue type ,, gmwm pp and csfp  have been inte-

grated with the fuzzy spatial affinity of each tissue element to classify the WM, GM 
and CSF. Classification assigns voxels/regions in an image into one or more specified 
classes and can be a hard (binary) or fuzzy process. In the hard binary case, the voxels 
are assigned to classes with a value of 1 or 0, whereas in fuzzy classification, the 
process assigns the membership values for each tissue type in each voxel. Therefore, 
the membership values e.g. ,, gmwm µµ and csfµ  indicate the amount of tissue present 

in the voxel or the probability that that voxel belongs to the given tissue class. Alone 
the fuzzy process can not incorporate information about the spatial context making it 
sensitive to noise. In order to minimise this problem we calculate the connectedness 
between each group of tissues in the spatial domain. 

The fuzzy classification process is designed to minimize the overall objective func-
tion F  with respect to the membership functions ikµ  and the centroids kv , 

( ) ( )
= =

−=
w

i

s

k
ki

m
ik vxF

1 1
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where, ix  is the observation at voxel si,  is the number of clusters or classes, w  is 

the image domain and the parameter m determines the amount of fuzziness of the 
resulting classification. The membership values of a voxel i to each class k are 

[ ]1,0∈ikµ and =
k

ik 1µ  (3) 

and the cluster centres kv  are upgraded using the membership values  
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The fuzzy digital topological and geometric concepts, initially developed by 
Rosenfield [11] are an extension of the crisp theory to the fuzzy set theory. In general, 
connectivity provides a useful tool for describing spatial relationships and region 
properties for image analysis. Rosenfield’s degree of connectivity was further studied 
by Udupa [6], who showed how, a fuzzy object can be defined as a fuzzy connected 
component of spatial elements. Fuzzy connectedness is a fuzzy relation in the set of 
all spatial elements which combines together the notion of the fuzzy adjacency of 
spatial elements, which is independent of any image information, and fuzzy affinity 
between spatial elements which depends on image intensity values. A binary scene 
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over a fuzzy digital space ( )ρ,nZ  is a pair ( )fC,=ℜ , where ρ  is a fuzzy spatial 

adjacency, Z is the digital space, n is the spatial elements (pixels or voxels), nZ is 
the set of all spatial elements, and f is a function of the scene domain C , and the 

range of f is a subset of the closed interval [ ]1,0 . Fuzzy spatial adjacency ρµ  is a 

fuzzy relation ρ  in nZ  if it is both reflexive and symmetric. ℜ  would be a binary 

scene over ( )ρ,nZ  if the range of f  is { }1,0 . When the result of segmentation is a 

fuzzy subset of the scene domain, this fuzzy subset can be equivalently represented by 

a scene wherein the scene intensity represents the fuzzy membership value fµ  in 

[ ]1,0  and such scenes are called membership scenes over ( )ρ,nZ . The process that 

converts a scene to a membership scene is called classification.  

Fuzzy spatial affinity βµ  is any reflexive and symmetric fuzzy relation β  in C , 

that is, 
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where, c , d  are the image locations of the two voxels. The fuzzy spatial affinity 
between voxels has been taken into consideration in the classification process. Here, 
connectedness takes into account the adjacency of the voxels and the similarity of 
their intensity values. This affinity is then used to assign the strength of connected-
ness between the voxels and the tissue classes by using the strength of connectedness 
between the successive points in the connecting path. The final strength of connec-
tivity within the same tissue class is the maximum strength along the path of mini-

mum distance. The fuzzy spatial affinity βµ  can be explained as follows: for any 

( ) Cdc ∈∀ , , ( )dc,βµ  is a function of (i) the fuzzy adjacency between each voxel, 

(ii) the homogeneity of the voxel intensities along the connecting path, (iii) the close-
ness of the voxel intensities and of the intensity-based features to some expected in-
tensity and feature values for the object, and (iv) the relative locations of the voxels.  

Therefore, the general form of ( )dc,βµ  can be expressed in equation (6) 

( ) ( ) ( ) ( )( )dcdfcfdchdc ,,,,,, ρβ µµ =  (6) 

where h  is a scalar-valued function with range [ ]1,0 , ( )dc,ρµ  is an adjacency 

function based on the distance of the two voxels, and ( ) ( )dfcf ,  are the intensity of 

the voxels c  and d , respectively.  
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Fuzzy connectedness is a fuzzy relationship in C , where ( )dc,βµ  is the maxi-

mum strength of connectivity along the smallest path between c  and d , which has 
the greatest affinity between them. In Udupa [6], a hard binary relationship is used in 

C  based on the fuzzy connectedness: ( ) ( ) [ ]1,0,,1, ∈≥= θµµ ββ dcifdc , oth-

erwise 0 , where βµ  was chosen to be a hard adjacency relation and θ  is a threshold 

that contains the spatial elements in an object when the strength of connectedness 
between the spatial elements c and d is highest at that threshold value. In our study, a 
modification was used in the fuzzy connectedness algorithm to take into account the 
spatial affinity relationship along with the fuzzy membership values. Therefore, in 
this study, we have used an affinity relationship based on gmwm µµ , , and csfµ , the 

adjacency of the tissue elements, and the intensities without any extra weighting pa-
rameter. With this modification, we are able to assign fuzzy values for each tissue 
class to each undefined voxel based upon their spatial affinity.  

3   Results 

3.1   Deformable Contour Model 

The deformable contour model was applied to simulated MR volumes of different 
slice thicknesses (1mm – 5mm) with different noise levels ranging from 0% to 7%. 
Fig. 1 shows the resulting contours on a number of slices for T1-weighted simulated 
MR brain data of noise level 1%. A quantitative comparison has been carried out to 
investigate the percentage errors between the DCM results and the true anatomical 
volumes. The first row of Fig. 2 shows the percentage errors in a slice by slice com-
parison for noise levels 1% and 9% in 1mm slice thickness data. A comparison be-
tween the ICV in different slice thicknesses at different noise levels is given in the 
second row of Fig. 2.  

3.2   Tissue Segmentation 

The resulting ICV images from the DCM were then passed to the spatial affinity 
based fuzzy segmentation algorithm. The number of classes was set to three (CSF, 
GM and WM) in each case. The resultant fuzzy values assigned to the anatomical 
structures were used to calculate the mean and standard deviations for the image in-
tensities associated with each tissue class. The algorithm results are assessed by com-
paring the results obtained on the simulated data with the true volumes provided with 
the data by calculating the number of mis-classified voxels. Fig. 1 shows the seg-
mented results obtained from the fuzzy classification of CSF, GM and WM in the 
third, fourth and fifth rows, respectively. The algorithm was applied to simulated MR 
volumes of different slice thicknesses with different noise levels and a quantitative 
comparison was made between the ‘true’ classifications and the algorithm results 
(Fig. 2).   
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This algorithm was also applied to clinical MR data obtained from MGH website 
and the data from UCL volunteers. As the results were obtained as fuzzy values, the 
comparison was made between the class means obtained from the algorithm and the 
‘true’ means of the corresponding data sets. Fig. 3 shows the performance of the spa-
tial affinity based fuzzy segmentation on clinical MR data in terms of the percentage 
errors in means.  

Fig. 4 shows a visual comparison between the segmented tissues obtained by the 
algorithms and the ‘true’ fuzzy tissues of the corresponding slices for the simulated 
brainweb. The results obtained from tissue classification are presented in Fig. 5 with 
the ‘crisp’ segmented tissue labels. 

3.3   Accuracy 

Deformable Contour Model. Fig. 2 illustrates the results of the extraction of the 
intracranial volume by applying the deformable contour model. The percentage errors 
were calculated from the difference between the segmented results and the ‘true’ 
values. We have observed that the DCM has successfully segmented ICV with per-
centage errors of 3.69% for the slice thickness of 1mm in the presence of 9% of noise. 
As shown in Fig. 2, the percentage errors are less in the middle of the brain because of 
less edge complexity. The errors are less than 4% in the case of 3mm slice thickness 
at every noise level. In the case of 5mm slice thickness, the percentage errors in-
volved in assigning the voxels in the ICV are up to 5.32%. The likely explanation is 
that with thicker slices, the structural boundaries suffer greater from partial volume 
effects. 

Spatial Affinity Based Fuzzy Segmentation. Fig. 2 shows the classification results 
after applying the proposed algorithm in terms of voxels assigned to each tissue class 
and the percentage errors with respect to the ‘true’ classifications. The errors associ-
ated with the number of voxels assigned tissue classes for WM and GM are less than 
3% and 2%, respectively and the percentage errors for CSF are less than 4% for 1mm 
slice thickness simulated brain volume up to 5% of noise. Fig. 2 shows that this affin-
ity based segmentation provides a good classification for GM (0.94% mis-
classification at 3% noise of 1mm slice thickness). However, the errors in the number 
of mis-classified voxels are higher in the 7% of noise data with the slice thicknesses 
of 3mm and 5mm. Fig. 4 illustrates a visual comparison of the segmented tissues and 
the ‘true’ tissues, and revealed that the classification of brain tissues are well matched. 
The total brain volume (TBV) was calculated which is the volume of WM plus the 
volume of GM and it has been observed that the percentage errors varied from (-0.272 
to 2.077) for 1mm slice thickness, (0.207 to 3.399) for 3mm and (0.063 to 4.527) for 
5mm slice thickness at all different noise levels (0% to 7%). Similarly, the GM, WM 
and CSF volumes were calculated and the percentage errors varied from (-0.94 to 
2.90), (2.23 to 5.20), and (3.00 to 4.2), respectively for 1mm slice thickness. For 3mm 
slice thickness, the percentage errors varied for GM (0.50 to 5.62), WM (3.0 to 7.21), 
CSF (4.00 to 6.50) and for 5mm slice thickness, GM (4.97 to 5.33), WM (4.00 to 
7.20) and CSF (1.15 to 7.00) at different noise levels.  
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Fig. 1. Results of the DCM and spatial affinity based fuzzy segmentation applied to a simulated 
MR volume with 1% noise level. The first and second rows show the DCM around the ICV of 
the original slices and the extracted ICV. The third, fourth and fifth rows show the CSF, GM 
and WM tissues. The last row presents a 3D view of the extracted ICV, WM, GM and CSF. 
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Fig. 2. Comparison between the segmented regions using the deformable contour model 
(DCM) and the spatial affinity based fuzzy segmentation with the ‘true’ values performed on 
the simulated brain volume of thicknesses 1mm to 5mm with different noise levels (0% to 7%). 
The percentage errors are calculated from the difference between the segmented results and the 
‘true’ values. The result in the first row is for slice thickness of 1mm. 
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Fig. 3. Bar graphs to show the percentage errors in class means for the spatial affinity based 
fuzzy segmentation performed on the clinical MR brain volume in 18 data sets. The percentage 
errors are calculated from the difference between the class means result and the true mean 
values. 
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In the clinical MR volumes, the percentage errors in means were calculated for 
WM and GM and presented in Fig. 3 for 18 data sets from MGH where they have 
various levels of difficulty. It was observed that the percentage errors in WM were 
less than 0.5% in 8 cases, less than 2.5% in 8 cases and less than 7.5% in 2 cases. The 
percentage errors in means for GM are less than 0.5% for 7 cases and in between 
0.5% to 2.6% for 11 case studies. The percentage errors in means of the remaining 
two data sets are more than 10%.  

4   Discussion 

The partial volume effect is a major obstacle to the accurate separation of GM, WM, 
and CSF in MR images. To counteract the partial volume effect, we have presented an 
algorithm to improve the segmentation and classification of MR T1-weighted brain 
tissues into WM, GM and CSF by using a spatial affinity based fuzzy classification. 
The classification of partial volume voxels were calculated from an affinity based 
fuzzy segmentation and the classification process has taken into account the spatial 
connectivity along with fuzzy labelling. The hypothesis is that a voxel will be la-
belled, with a fuzzy value, as containing a particular tissue, with the greatest affinity 
along the shortest path. 

Table 1. Results of the spatial affinity based fuzzy segmentation performed on clinical MRI 
volume. The volume in voxels, means and standard deviations (std dev) of each tissue class of 
WM and GM are presented. 

WM GM 
data 

volume Mean Std dev volume mean Std dev 
WM/TBV GM/WM  

set 1 554289 1480.85 82 809599 1377.69 102 0.406 1.461 

set 2 382564 186 32 483890 133.73 36 0.442 1.265 

set 3 521230 1544.67 34.29 492555 1428.56 45.64 0.514 0.945 

set 4 543570 1425.52 26.95 593586 1336.81 31.95 0.478 1.092 

set 5 550276 1472.82 29.49 639256 1378.47 35.69 0.463 1.162 

set 6 398789 90.04 7.71 414528 67.41 7.54 0.490 1.039 

set 7 561102 1325.37 20.86 661508 1252.84 24.89 0.459 1.179 

set 8 449231 88.9 8.54 509227 64.9 8.24 0.469 1.134 

set 9 554631 1462.51 26.87 623667 1357.35 24.91 0.455 1.197 

set 10 645368 1629.34 40.6 772561 1494.23 48.18 0.386 1.461 

Set 11 381791 344.10 27.25 446989 254.37 30.80 0.461 1.170 

Set 12 582219 1543.99 38.50 617945 1418.56 31.11 0.485 1.061 

Set 13 608359 1579.71 39.45 603793 1444.71 48.46 0.501 0.992 

Set 14 525237 1549.66 37.34 559475 1419.65 45.84 0.484 1.065 

Set 15 425283 172.75 16.63 454384 124.52 15.65 0.483 1.068 

Set 16 434186 393.46 35.2 494588 281.36 34.53 0.467 1.139 

Set 17 312241 157.33 20.3 477474 107.13 15.45 0.395 1.529 

Set 18 589909 104.56 38.22 1112127 71.26 35.26 0.347 1.885 
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Fig. 4. Illustration of the CSF, GM and WM in the ‘true’ simulated brainweb volume with the 
results obtained from the fuzzy segmentation. The top and bottom rows present the result of the 
segmented tissues and the corresponding ‘true’ classification respectively. 

This affinity based fuzzy segmentation along with the deformable contour model 
have been applied to the simulated brain web volume to make an investigation of the 
effects of noise and partial volume effects on tissue classification. The experimental 
results for GM, WM and CSF segmentation show promise. This segmentation algo-
rithm was also applied to clinical MR brain volumes (MGH website) where the tis-
sues are affected by various levels of difficulty. Even in the presence of this difficulty, 
it can be seen in Fig. 3, that the percentage errors in means of WM and GM are still 
small. The results of the clinical MR volume are presented in Table 1. 

In order to make a comparison in this study, the ratio of WM to TBV was calcu-
lated and is presented in Table 1. Our values for this ratio are comparable with the 
values previously reported [1, 12]. In conclusion, we have demonstrated here a better 
segmentation algorithm to separate tissues from MR brain images with good accuracy 
and reproducibility. Both methods were extensively tested on well-established simu-
lated brainweb data and with clinical datasets. 

    

    

Fig. 5. A graphical comparison between the results of the spatial affinity based fuzzy algorithm 
performed on the clinical MR volume (upper row) with the corresponding ‘true’ crisp labelling 
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Abstract. With the emergence of swept-volume ultrasound (US) probes, pre-
cise and almost real-time US volume imaging has become available. This offers
many new opportunities for computer guided diagnosis and therapy, 3-D images
containing significantly more information than 2-D slices. However, computer
guidance often requires knowledge about the exact position of US voxels relative
to a tracking reference, which can only be achieved through probe calibration.
In this paper we present a 3-D US probe calibration system based on a mem-
brane phantom. The calibration matrix is retrieved by detection of a membrane
plane in a dozen of US acquisitions of the phantom. Plane detection is robustly
performed with the 2-D Hough transformation. The feature extraction process is
fully automated, calibration requires about 20 minutes and the calibration system
can be used in a clinical context. The precision of the system was evaluated to
a root mean square (RMS) distance error of 1.15mm and to an RMS angular er-
ror of 0.61◦. The point reconstruction accuracy was evaluated to 0.9mm and the
angular reconstruction accuracy to 1.79◦.

1 Introduction

Until recently, 3-D ultrasound (US) volumes had to be manually reconstructed from a
number of 2-D US slices acquired while slowly moving a 2-D probe over the target
region. The so-called 3D freehand method is time-consuming, imprecise and not usable
for many clinical applications requiring real-time acquisition [1]. The emergence of
3-D swept-volume US probes solved most of the enumerated problems: a mechanical
device capable of sweeping the 2-D crystal array of the probe over a target region makes
it possible to acquire 3-D US volumes accurately and almost in real-time (1s to 4s per
acquisition)1.

These new capabilities open an entire new field of applications in the domain of com-
puter guided medical interventions based on US imaging. One can imagine tool guid-
ance systems that would operate with permanently updated US volumes, visualizing for
instance slices at the tool tip position. More sophisticated applications could carry out

1 However, most currently available systems don’t yet provide a real-time data transfer interface
for 3-D data. Nevertheless one can acquire so called ”4-D” images of three orthogonal volume
slices in real-time using a video-capture device. In the rest of this article we make abstraction
of this restriction, hoping that it will disappear with the next generation of 3-D echographs.

R.R. Beichel and M. Sonka (Eds.): CVAMIA 2006, LNCS 4241, pp. 248–259, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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target localization inside the volumes through real-time registration and segmentation
techniques, thus allowing to match pre-operative planning with intra-operative data.

However, US-based guidance often requires knowledge about the position and orien-
tation of the US volume in space. When using a tracking system this can be achieved by
calibrating the US acquisition volume with a tracking reference fixed on the probe. Un-
fortunately it is virtually impossible to derive the calibration parameters directly from
the geometry and parameterization of the probe. Almost all existing calibration systems
rely therefore on statistical or segmentation-based object matching methods.

1.1 Calibration Methods Overview

A variety of techniques for 2-D US calibration was proposed in the literature; a com-
prehensive review being given in [2]. Calibration methods can be classified with respect
to the target geometry they rely on. Single-point target methods identify a point, i.e. a
bead, a calibrated pointer tip or a cross-wire, in the US image [3,4,5]. The difficulties
consist in automatic geometry extraction in the US slice and US beam alignment with
the phantom.

Multi-point target phantoms are extensions of the single-point bead or cross-wire
phantoms. They consist of a number of point targets with precisely known coordinates
in phantom space. Their geometric configuration makes it possible to derive the calibra-
tion parameters from the distances between the reconstructed intersection points visible
in the 2-D US scan [6]. Compared to single-point phantoms they require less image ac-
quisitions due to their more discriminative geometry, but share the phantom alignment
and feature extraction problems.

Z-fiducial or N-fiducial phantoms address the alignment problem of point target
methods. A calibration point is determined from the intersection points of a number
of nylon strings with the US beam. This is possible due to a sufficiently discrimina-
tive wire geometry [7,8,9]. Fiducial methods are more robust than point target methods
but the difficulties concerning fully automatic feature extraction subsist. Also, Z- or
N-fiducial phantoms require a high manufacturing accuracy to achieve a satisfying cal-
ibration quality.

Wall phantom methods are based on detection of the intersecting line of a planar
surface with the 2-D US beam. In [4], a water tank bottom is imaged for calibration.
The authors of [10] address the reverberation and line thickness problems inherent of
wall phantoms by using a membrane variant. Both phantoms have difficulties when
confronted with steep angles between the US beam and the plane because they cause
line intensity and line sharpness degradation [2]. The Cambridge phantom scans a ro-
tating bar, thus creating a virtual plane, to solve these problems [4]. The advantage of
plane phantoms lies in the robustness of the feature extraction process which can, as a
consequence, be reliably and fully automated. The pitfall of this method lies in the non-
discriminative phantom geometry which can result in underdetermined systems if the
acquired calibration samples do not cover all degrees of freedom. This can be avoided
by strictly respecting the acquisition protocols presented in [4,11].

Registration Phantoms: the last class of calibration methods relies on surface or in-
tensity based registration techniques and therefore has the advantage of being indepen-
dent of phantom geometry. The only requirement on phantom shape is that its US image
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is sufficiently discriminative with respect to rotations and translations, which is true for
non-symmetric phantoms. The lack of precision of registration algorithms is the major
drawback of this approach. To our knowledge, only one study examined registration-
based 2-D probe calibration, registering US slices with an MRI image of the phantom
[12]. A 3-D approach is discussed in the next paragraph.

1.2 3-D Probe Calibration

Until today, only few studies about calibration of 3-D probes were carried out. Poon
and Rohling [13] compared 3-D calibration based on a IXI-fiducial wire phantom,
a pointer tip phantom and a cube phantom. The IXI wire phantom and the cube
phantom methods require only one volume acquisition for calibration. The presented
feature detection is semi-automatic. The best results yielded the IXI phantom with a
mean error in reproducibility of 1.5 mm, a RMS error of the point accuracy measure
of 2.15 mm and a RMS error of the reconstruction accuracy by distance measure
of 1.52 mm. Bouchet et al [14] examined Z-fiducial phantom and achieved a RMS
point accuracy error of 1.1mm. Two variants of a surface registration based 3-D
calibration method were presented by Lange and Eulenstein in [15]. The first one
registers 3-D US images of the phantom with a geometric model derived from its CT
scan. The second variant registers a number of US images of the phantom acquired
from different positions. In both cases, surfaces are extracted manually. The authors
claim that the latter approach could be fully automated. The CT variant performed
best and yielded a RMS error in reproducibility precision of 1.8 mm and a RMS
error in point accuracy of 2.0 mm. The ultrasound speed distortion problem is not
addressed.

In this study we propose a 3-D US calibration method based on a single plane mem-
brane phantom. A fast, precise and accurate 3-D feature extraction algorithm relying
on the 2-D Hough transform is presented. In contrast to existing 3-D US calibration
systems, the feature extraction process is fully automated. In the result section, pre-
cision and accuracy assessments are carried out using a specially designed validation
phantom.

2 Materials and Methods

2.1 Acquisition Hardware

The acquisition hardware consists of a GE Voluson 730 Pro 3-D US scanner and a
NDI Polaris optical tracker with a 0.25 mm RMS error (as communicated by NDI).
The tracking system operates with wireless (passive) infrared-reflecting rigid bodies
equipped with flat markers. The ultrasound volumes are acquired with a 5 to 9 Mhz two
dimensional curved array probe (see Fig. 1a). The piezo array of the probe is mounted
on a mechanical device which is capable of sweeping regularly around its rotation axis
within a predefined angular range. During the continuous sweeping process the US
hardware reconstructs 3-D volumes from the series of acquired 2-D slices. The 3-D
acquisition time ranges from 1s to 4s, depending mainly on sweep angle and axial
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acquisition depth. Images are digitally transferred using a proprietary software from
GE Medical Systems named 4D View. The US scanner also communicates the voxel
size. The scan converter assumes the speed of sound (SoS) in tissue to be 1540 m/s.

2.2 The Membrane Phantom

The calibration phantom being dedicated to a clinical context, ergonomics considera-
tions had an important impact on its design. We use a variation of the wall phantom
presented in [4], which is based on imaging the bottom wall of a water tank. The geo-
metric form of the wall, which is a line in 2-D and a plane in 3-D, can be very robustly
extracted from the US data using statistical algorithms like the Hough transform. This
makes it possible to fully automate the feature extraction process without significant
loss in precision and accuracy. This represents a big advantage over semi-automatic
point-detection based phantoms in terms of calibration speed and ease of use. To over-
come the plane thickness and the reverberation problems observable in US images of
rigid surfaces [4] a filigrane nylon mesh membrane, tightly spanned on a planar rigid
support with a circular and about 20cm wide hole, is used as target (see Fig. 1b). Rever-
beration is further reduced by inclining the membrane plane with respect to the water
tank bottom by 45◦. A tracking reference (rigid body) is mounted on the membrane
frame for phantom localization. The phantom is filled with water and equipped with a
thermometer to measure water temperature.

(a) (b)

Fig. 1. Calibration hardware. Figure (a) shows an endorectal US probe mounted on an articulated
arm. Figure (b) shows the membrane phantom. Both the probe and the membrane are equipped
with infra-red reflecting passive rigid bodies for tracking.

2.3 3-D Calibration Mathematics

As illustrated in Fig. 2, four references are relevant for calibration: first of all, the mem-
brane space M is defined as a reference in which the membrane lies in the origin and is
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parallel to ex and ey base vectors of M. In this space, every point with a zero z-ordinate
is a membrane plane point. The phantom space Ph and the probe space Pr are defined
by the rigid bodies that are attached on the phantom and on the probe. Finally, the US
volume space U corresponds to the voxel space of the 3-D images acquired by the
ultrasound device. TPh2M, TPr2Ph and TU2Pr are homogenous 4x4 transformation
matrices.

Suppose that we identified a point p = (x, y, z) in a US volume U as a point be-
longing to the membrane. With s = (sx, sy, sz) denoting the voxel scale factors, it is
verified that ⎛⎜⎜⎝

m1
m2
0
1

⎞⎟⎟⎠ = TPh2M · TPr2Ph · TU2Pr ·

⎛⎜⎜⎝
sxx
syy
szz
1

⎞⎟⎟⎠ . (1)

where TPh2M is known from membrane pre-calibration (see chap. 2.4) and TPr2Ph
is given by the tracking system. Further, the scaling vector s is communicated by the
US hardware. The remaining unknown element is the homogenous rigid transformation
TU2P. For convenience we define the elements of TPr2Ph · TPh2M as aij and the
elements of TU2P as bij (i, j ∈ 1..4). The zero component of (1) yields then

0 = a31 (sxxb11 + syyb12 + szzb13 + b14) +
a32 (sxxb21 + syyb22 + szzb23 + b24) +
a33 (sxxb31 + syyb32 + szzb33 + b34) +
a34 .

(2)

Using Euler angles and a three-dimensional vector we can represent TU2P with six
variables, which leaves us in total with 6 unknowns to solve for. A detected plane
can be added to the equation system by adding at least three plane points (Using of
course the TPr2Ph measured while acquiring the US volume in which the plane was
detected).

Fig. 2. Illustration of the transformations involved in the calibration process. Note that scaling is
omitted from the scheme for simplification.
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2.4 Membrane Pre-calibration

To reduce the number of degrees of freedom of the calibration process, the membrane
space M is determined using a pointer equipped with a tracking reference. A large
number of surface points of the membrane-supporting structure is acquired in order to
compute the plane equation using a least square approximation combined with a simple
M-estimator to increase robustness. Since the phantom rigid body is permanently fixed
on the phantom, pre-calibration has to be carried out only once.

2.5 Acquisition Protocol

The major drawback of single-plane phantoms resides in their barely discriminative ge-
ometry. A plane can be described with only three variables, from which it follows that
even with an optimal acquisition protocol, a minimum number of two acquisitions is
necessary to cover all degrees of freedom. To obtain robust results the twelve-step ac-
quisition protocol presented in [4] is used. The protocol improvement presented in [11]
mainly addresses the z-axis imprecision problem inherent of most 2-D calibration sys-
tems. Since 3-D probes give as much information in z-direction as in x- or y- direction
this modification yields no particular advantage in the 3-D domain but requires at least
18 steps. For that reason we stick to the original version.

Sweeping and volume reconstruction being a continuous process of 1 to 4 seconds,
significant distortions can be observed in the US volume when the probe is moved
rapidly. Also, no direct access to the digital data is available which prevented synchro-
nization of probe position measurement with US image acquisition. Therefore an artic-
ulated arm for complete probe immobilization during acquisition is used, eliminating
all motion-induced artifacts and time lags. Furthermore, immobilizing the probe makes
it possible to perform high precision position measuring based on a large number of
measures and outlier elimination.

2.6 Feature Extraction

The first step of the feature extraction process consists in correcting the distortion
caused by the difference between US speed in water at room temperature and in human
tissue at 37◦. To determine US speed in water in function of temperature the polyno-
mial formula established by Bilaniuk and Wong was used [16,17]. A distortion geome-
try overview for all common probe types is given in [18]. The distortion geometry of a
sectorial probe is given in Fig. 3a. With vt

W being the US velocity in water for a given
temperature t and vT being the velocity in tissue, dT is determined using the following
formula:

dT =
vT

vW
· dW . (3)

Sectorial probe speed correction requires manual definition of the US origin and the
scan head surface radius. A graphical user interface was developed for this purpose
(see Fig. 3b). Origin and surface radius have to be defined only once during calibration.
Plane detection can be carried out using the 3-D Hough transformation, but it would
take several minutes to compute the result. Fortunately it is possible to determine the
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(a) (b)

Fig. 3. US speed correction. Fig. (a) illustrates the correction geometry of a sectorial probe. OUS

is the probe origin, r the probe surface radius, dW the point’s P distorted distance from the probe
surface in water, dT the corrected distance and P′ the corrected point. Fig. (b) shows the probe
mask used to determine US origin and probe surface radius.

plane with good precision by simply extracting its intersection with two arbitrary vol-
ume slices, using the 2-D Hough transform. To facilitate and to accelerate US speed
correction the xy and zy planes passing through the scan head origin were used. The
Hough transform implementation uses intensity accumulation and the following thresh-
old sH for an image I:

sH = max{i ∈ Hist(I)} + (max{i ∈ I} − min{i ∈ I})/3 . (4)

The purpose of sH is to ignore the low-intensity water background, which represents
the largest part of the image.

(a) (b)

Fig. 4. Screenshot of a successful automatic plane extraction. Note that lines are correctly detected
in spite of a degraded membrane image caused by a steep scan angle. The arrows point at the line
intersections with the mask.

2.7 Optimization

Optimization of (2) is carried out with the non-linear Levenberg-Marquardt implemen-
tation given in [19]. A random restart scheme within a range of reasonable initialization
values robustifies this process.
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2.8 Visual Back-Tests

The plane coordinates as resulting from the optimization process are visualized as a line
in the slices used for feature extraction, and distance plus rotational errors between the
segmented and the calculated line are evaluated. This allows for manual replacement of
evident outliers with new acquisitions and for recomputation of the calibration without
requiring a complete restart.

3 Experimental Results

3.1 Test Configuration

Precision and accuracy assessments were carried out using a membrane plane pre-
calibration with an RMS surface distance error of 0.43mm for the measured surface
points. A total of ten calibrations were performed using the twelve-step protocol. The
probe rigid body was not moved between calibrations. The probe was mounted on an
articulated arm and immobilized during position and image acquisition. The water tem-
perature was 23◦. The acquired US volumes had a size of (199, 199, 199) isotropic
voxels with 0.477mm side lengths.

3.2 Feature Extraction Quality

The Hough transform extracted lines correctly for 238 out of 240 acquired images.
Line detection failed for images on which only a very small part of the membrane
was visible. In these cases, lines had to be manually determined. Note that no manual
outlier elimination was carried out. As detection failures were rare, calibration was in
average carried out in about twenty minutes. To get a better idea about the quality of
feature extraction and about the presence of distortions in the membrane images we
measured the detection precision: using (2) we can calculate the distance error between
a measured plane point and the computed plane as follows:

ε(x, y, z) = a31 (sxxb11 + syyb12 + szzb13 + b14) +
a32 (sxxb21 + syyb22 + szzb23 + b24) +
a33 (sxxb31 + syyb32 + szzb33 + b34) +
a34 .

(5)

For each calibration, the average and the root mean square (RMS) distance of a set of
points to the pre-calibration plane was computed using (5). For each line we computed
ten equidistant points between the extreme points on the line segment inside the US vol-
ume. The angular feature extraction error is defined as the angle between the computed
plane normal and the cross product of the directional vectors of the two extracted lines.
Based on this definition the maximum and the RMS angular errors were computed for
each acquired volume of the calibration. The aggregated errors for all calibrations can
be found in Table 1.
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Table 1. Aggregated Feature Extraction Precision

Distance Error Distance Error Angular Error
[mm] [vox] [deg]

RMS Error 0.37 0.77 0.26
Max Error 1.30 2.73 1.09

3.3 Calibration Precision

The calibration precision measures the reproducibility of calibration results. Again,
both the translational and the angular errors were assessed. The translational error is
defined as the standard deviation of the volume center after scaling and right-hand
multiplication to the different calibration transformations Ti

U2Pr. The angular error is
measured as the standard deviation of angular differences between the (0, 0, 1) vector
after scaling and right-hand multiplication to the different calibration transformations
Ti

U2Pr (see Table 2).

Table 2. Calibration Precision

Distance Error Distance Error Angular Error
[mm] [vox] [deg]

Standard Deviation 1.15 2.41 0.61
Max Error 1.99 4.03 1.12

3.4 Reconstruction Accuracy

Reconstruction accuracy was assessed using the bead phantom illustrated in Fig. 5.
Note that the beads are co-planar within a precision of 0.25mm (RMS). The left-hand
three beads form the left triangle while the right-hand beads form the right triangle.
The distance dB of the triangle barycenters was evaluated with an estimated accuracy
of about 0.5mm.

Fig. 5. Reconstruction Accuracy Measurement Phantom
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Table 3. Reconstruction Accuracy Results

Distance Error Distance Error Angular Error
[mm] [vox] [deg]

RMS Error 0.90 1.90 1.79
Max Error 2.44 5.11 3.03

Twenty US images of the phantom were acquired, ten imaging the left triangle and
ten the right triangle. Note that images of one triangle did not intersect with the sec-
ond one. The bead centers were manually extracted from the images. The reconstructed
triangle barycenters and normals were then projected into probe space for each calibra-
tion, which yielded 100 point and vector pairs. The distance error for a point pair is
defined as the difference between their Euclidean distance and dB . The angular error
for a vector pair is defined as the angle between both vectors. The results are given in
Table 3.

4 Discussion

Probe calibration for currently available swept-volume 3-D probes makes only sense for
static applications. Real-time access to acquired 3D images is currently not provided by
the Voluson hardware. Also, depending on scan parameters, the duration of the volume
sweeping process ranges from 1s to 4s. Due to probe or tissue motion, the physical
location of voxels can therefore be way off the position indicated by the calibration. The
latter problem could be reduced by scan-heads equipped with high-frequency sweeping-
devices, but it will disappear only with non-sweeping 2-D piezo array US probes. Until
then, it is better to calibrate probes using an articulated arm for immobilization.

Passing from 2-D to 3-D calibration improves calibration results (for information
on 2-D precision of the membrane phantom see [20]) because the z-axis-uncertainty
inherent of 2-D calibration is eliminated: when giving a plane instead of a line as input
to the optimizer the rotational degrees of freedom are significantly better covered. This
allowed us to reduce the number of acquisitions for calibration while still achieving
precise and accurate results.

Feature extraction from membrane phantom images showed both robust and precise
results. On our set of test images the line blurring and intensity degradation effects oc-
curring when scanning a wall phantom from an oblique angle were correctly handled
by the Hough transform: lines were consistently placed in the center of the beam width.
Note that the feature extraction precision RMS and maximum errors reported in Ta-
ble 1 are relatively small, which indicates that the physical plane location corresponds
indeed with the beam width center line. Membrane reverberation was not observable
and did therefore not disturb the detection process. Also, the membrane phantom was
not exposed to line thickness problems. Due to these characteristics, feature extraction
could be fully automated (up to the manual US origin and probe radius determination
required for US speed correction).
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The user-independency resulting from automated feature extraction is partially coun-
ter-balanced by the necessity to follow a protocol for data acquisition, which can re-
introduce user bias. Nevertheless we believe that it is more convenient to follow a
simple acquisition protocol instead of extracting features semi-automatically from US
volumes. Further we preferred to correct for US speed errors instead of requiring 50◦

water or phantom fill materials that have the same US characteristics than human tissue,
which makes it possible to use the phantom in a clinical context.

The overall calibration time of about 20 minutes is mostly due to manipulation of
the articulated arm, high precision probe position measurement and data transfer, which
requires several manual interventions. Feature extraction and optimization is computed
in several seconds. In cases where the feature extraction precision evaluation shows
poor results, a visual verification and eventually a correction have to be carried out,
which requires some additional minutes. Significant speed-up could be achieved by
automating the communication between the US scanner and the calibration computer.

The presented calibration system assumes that the SoS in human tissue is uniform
and that it corresponds to the SoS internally used by the US scanner, which is in general
the mean SoS in tissue of 1540m/s. However, SoS varies with different types of tissue:
The SoS in fat is approximately 1450m/s, in blood 1570m/s, in the brain 1541m/s and
in water 1480m/s. As the US generally crosses tissue layers of different thickness and
different types on its way through the body, and as the target tissue is often viewed from
various positions, the in vivo accuracy of the calibration may show fluctuations of more
than 5 per cents in extreme cases during an examination. Also, for some applications it
would be appropriate to use a different mean SoS than the 1540m/s for calibration, but
this is beyond the scope of this study.

Future work will address the twelve-step acquisition protocol which contains a lot of
redundancy. Also, our system does currently not provide a foolproof indicator for miss-
ing coverage of degrees of freedom. We therefore started experiments with an Eigen-
value system similar to the one presented in [21].

5 Conclusion

A robust 3-D US probe calibration method designed for clinical usage was presented.
Calibration can be carried out in about twenty minutes due to fully automatic 3-D Plane
extraction based on robust and efficient 2-D line detection. The point reconstruction
accuracy of our phantom can compete with previously presented 3-D phantoms: Lange
and Eulenstein communicated RMS errors between 2.0mm and 2.2mm [15], Bouchet
et al were confronted to 1.1mm RMS point accuracy [14] while Pohn and Rohling
published errors between 1.52mm for their IXI-wire, 1.59mm for the cube and 1.85mm
for their stylus approach. With 0.90mm RMS point accuracy (see Table 3) we achieved
slightly better results. Finally, the proposed method is temperature-independent and
uses water as transmission matter which facilitates its usage.
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